
1 | P a g e

2 | P a g e

Addressing Modes Part II – AVR Addressing Indirect

READING

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 6: AVR Advanced Assembly Language Programming

Section 6.1: Introducing some more assembler directives

Section 6.3: Register Indirect Addressing Mode

Section 6.4: Look-up Table and Table Processing

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

3 | P a g e

CONTENTS

Reading ... 2

Contents ... 3

Addressing Modes .. 4

Operand Locations and the ATmega328P Memory Model .. 5

Immediate Addressing Mode – A Review ... 6

Direct Addressing Mode – A Review ... 7

The X-register, Y-register, and Z-register .. 8

Program Memory Indirect .. 9

Two Viewpoints .. 10

Program Memory Indirect with Post-increment .. 11

Program Memory Indirect – Example 1 .. 12

Princeton versus Modified Harvard Memory Models .. 13

Program Memory Indirect – Example 2 .. 14

Big Endian versus Little Endian – Define Byte .. 15

Big Endian versus Little Endian – Define Word ... 16

4 | P a g e

ADDRESSING MODES

 When loading and storing data we have several ways to “address” the data.

 The AVR microcontroller supports addressing modes for access to the Program memory (Flash) and Data memory (SRAM,

Register file, I/O Memory, and Extended I/O Memory).

Load-store Instructions

Addressing Mode

Immediate

Direct

Indirect

Indirect with Displacement

Address Space

Flash Program SRAM Data I/O

ldi

lds, sts in, out

ld, st (2)

ldd, std (3)

lpm, spm (1)

Notes:

2. Load-store indirect from data space to register using index registers x, y, and z. Index register can

be unchanged, pre-decrement, or post-incremented.

1. Load-store indirect from program memory to register using index register z. Index register can be

unchanged, or post-incremented. The program memory is organized in 16-bit words while the Z-

pointer is a byte address. Byte ordering is little-endian.

3. Load-store indirect with displacement from data space to register using index registers y and z.

5 | P a g e

OPERAND LOCATIONS AND THE ATMEGA32U4 MEMORY MODEL

 When selecting an addressing mode you should ask yourself where is the operand (data) located within the memory model of

the AVR processor and when do I know its address (assembly time or at run time).

FLASH Program

Memory

16K x 16 (32 K bytes)

0x0000

0x3FFF

byte 1 0

16-bit

Word

Address

(little-

endian)

Application

Flash

Section

0x0000

0x0AFF

32 Registers

SRAM Data

Memory

2.5 K bytes

64 I/O Registers

160 Ext I/O Reg.

2560 x 8 SRAM

EEPROM Data

Memory

1 K byte

0x001F
0x0020

0x005F
0x0060

0x00FF
0x0100

SRAM

Address

0x0000

0x003F

I/O

Address

Boot Flash Section

256a2048 words

6 | P a g e

IMMEDIATE ADDRESSING MODE – A REVIEW

 C++ Code

uint8_t foo; // 8-bit unsigned number, from 0 to 255

foo = 0x23;

 Assembly Code

o Data is encoded with the instruction. Operand is therefore located in Flash Program

Memory. This is why technically our memory model is a Modified Harvard.

ldi r16, 0x23 // where ldi = 1110, Rd = 00002

 // and constant K = 001000112

o Notice that only four bits (dddd) are set aside for defining destination register Rd. This

limits us to 24 = 16 registers. The designers of the AVR processor chose registers 16 to 31

to be these registers (i.e., 16 ≤ Rd ≤ 31).

o What is the machine code instruction for our ldi example?

7 | P a g e

DIRECT ADDRESSING MODE – A REVIEW

 C++ Code

uint8_t foo, A = 0x23; // 8-bit unsigned number, from 0 to 255

foo = A;

 Assembly Code

.DSEG

 A: .BYTE 1

.CSEG

 lds r16, A

lds Rd, k 0000dddd000d1001

kkkkkkkkkkkkkkkk

sts k, Rr 0000rrrr001r1001

kkkkkkkkkkkkkkkk

0x0000

0x0AFF

32 Registers

SRAM Data Memory

64 I/O Registers

160 Ext I/O Reg.

2560 x 8 SRAM

0x001F

0x0020

0x005F

0x0060

0x00FF

0x0100

015 34781112

8 | P a g e

THE X-REGISTER, Y-REGISTER, AND Z-REGISTER

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit

address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are

defined as described here.

In the different addressing modes these address registers have functions as fixed displacement, automatic

increment, and automatic decrement (see the instruction set reference for details).

9 | P a g e

PROGRAM MEMORY INDIRECT

 The indirect addressing mode in all its forms is used when you will not know the location of the data you

want until the program is running. For example, in our 7-segment decoder example, we do not know ahead

of time which number (0 to F) we want to decode.

lpm Rd, Z

 Instruction Encoding

015 34781112

0100dddd000d1001

10 | P a g e

TWO VIEWPOINTS

 You can look at the indirect addressing mode address as a word address with a byte selector (illustration

on the left), or as a byte address (illustration on the right).

 The first viewpoint is correct from a computer engineering perspective (it is really how it is works). The

second perspective is functionally equivalent and helps us visualize the computation of the indirect address

as the sum of the base address plus an index.

 The most significant bit of the ZH:ZL is lost, to make space for the byte address in the least significant bit.

Addressing Mode Operation – Two Viewpoints

0

1

2

3

4

5

Byte
Address

0

Word
Address

0

1

2

7815

11 | P a g e

PROGRAM MEMORY INDIRECT WITH POST-INCREMENT

lpm r16, Z+

 Instruction Encoding

015 34781112

0101dddd000d1001

 Addressing Mode Operation

12 | P a g e

PROGRAM MEMORY INDIRECT – EXAMPLE 1

ldi ZH, high(Table<<1) // Initialize Z-pointer (read next page)

ldi ZL, low(Table<<1)

lpm r16, Z // Load constant from Program

; Memory pointed to by Z (r31:r30)

...

Table:

.DW 0x063F // 0x3F is addressed when ZLSB = 0

 // 0x06 is addressed when ZLSB = 1

13 | P a g e

PRINCETON VERSUS MODIFIED HARVARD MEMORY MODELS

Princeton or Von Neumann Memory Model

Program and data share the same memory space. Processors used in all personal computers, like the Pentium, implement a von

Neumann architecture.

Harvard Memory Model

As we have learned in the Harvard Memory Model, program and data memory are separated. The AVR processors among others

including the Intel 8051 use this memory model. One advantage of the Harvard architecture for microcontrollers is that program

memory can be wider than data memory. This allows the processor to implement more instructions while still working with 8-bit data.

For the AVR processor program memory is 16-bits wide while data memory is only 8-bits.

You may have already noticed that when you single step your program in the simulator of AVR Studio the Program Counter is

incremented by 1 each time most instructions are executed. No surprise there right? Wrong. The program memory of the AVR

processor can also be accessed at the byte level. In most cases this apparent paradox is transparent to the operation of your program

with one important exception. That important exception is occurs when you want to access data stored in program memory. It is this

ability of the AVR processor to access data stored in program memory that makes it a "Modified" Harvard Memory Model.

When you access from program memory you will be working with byte addresses not words (16-bits). The assembler is not smart

enough to know the difference and so when you ask for an address in program memory it returns its word address. To convert this

word address into a byte address you need to multiply it by 2. Problematically we do this by using the shift left syntax of C++ to

explicitly tell the assembler to multiply the word address by 2. Remember, when you shift left one place you are effectively multiplying

by 2.

With this in mind, we would interpret the following AVR instruction as telling the AVR assembler to convert the word address of label

beehives in program memory to a byte address and then to take the low order of the resulting value and put into the source operand

of the instruction.

ldi ZL,low(beeHives<<1) // load word address of beeHives look-up

14 | P a g e

PROGRAM MEMORY INDIRECT – EXAMPLE 2

 Program Memory Indirect is great for implementing look-up tables located in Flash program

memory – including decoders (gray code → binary, hex → seven segment, …)

 In this example I build a 7-segment decoder in software.

BCD_to_7SEG:

 ldi r16, 0b00001111 // limit to least significant

 and r0, r16 // nibble (4 bits)

 ldi ZL,low(table<<1) // load address of look-up

 ldi ZH,high(table<<1)

 clr r1

 add ZL, r0

 adc ZH, r1

 lpm spi7SEG, Z

 ret

// gfedcba gfedcba gfedcba

 table: DB 0b00111111, 0b00000110, 0b01011011, …

// 0 1 2

15 | P a g e

BIG ENDIAN VERSUS LITTLE ENDIAN – DEFINE BYTE

 To help understand the difference between Big and Little Endian let's take a closer look at how data is stored

in Flash Program Memory. We will first look at the Define Byte (.DB) Assembly Directive and then at the

Define Word (.DW) Assembly Directive.

Each table entry (.DB) contains one byte. If we look at the first table entry we see 0b00111111 which

corresponds to 3f in hexadecimal. Comparing this with the corresponding address and data fields on the

left... Wait a minute - where did 06 come from? That the second entry in the table (0b00000110 = 0616). The

bytes are backwards and here is why.

There are two basic ways information can be saved in memory known as Big Endian and Little endian. For

Big Endian the most significant byte (big end) is saved in the lowest order byte; so 0x3f06 would be saved as

bytes 0x3f and 0x06. For Little Endian the least significant byte (little end) is saved in the lowest order byte;

so 0x3f06 is save as bytes 0x06 and 0x3f. As you hopefully have guessed by now the AVR processor is

designed to work with data words saved as little endian.

16 | P a g e

BIG ENDIAN VERSUS LITTLE ENDIAN – DEFINE WORD

 Now let’s take a closer look at how data is saved in program memory using the Define Word (.DW) Assembly

Directive. For illustrative purposes we will look at a look-up table named beeHives.

Each table entry (.DW) contains two bytes (1 16-bit word). These two bytes provide the row and column of a room containing

bees. For example with respect to the maze, the room in row 00 column 04 contains 1 bee. If we look at the first entry we see

it contains 0x0400. Comparing this with the corresponding Program Memory Window in AVR Studio... Wait a minute - that

looks backward. From reading about the .DB assembly directive can you discover why?

