
1 | P a g e

2 | P a g e

AVR Subroutine Basics

READING
The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 3: Branch, Call, and Time Delay Loop, pages 118 to 125

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

3 | P a g e

CONTENTS
Reading ... 2

Contents ... 3

AVR Subroutine Basics .. 4

Why Subroutines? .. 5

My Little Subroutine Dictionary .. 6

Subroutine versus Function ... 6

Parameter versus Argument .. 6

Assembly Subroutine Template .. 7

How to Send Information to and/or from the Calling Program.. 8

How to Send Information to and/or from Your C Program .. 9

Rules for Working with Subroutines ... 10

Basic Structure of a Subroutine – A Review .. 12

4 | P a g e

AVR Subroutine Basics

 How do I go to and return from a subroutine?

rcall label

call label

icall label

ret

 AVR Call Addressing Modes

Relative The relative address is encoded in the machine instruction using 12 bits. Assuming that the
Program Counter (PC) is pointing at the next instruction to be executed, a relative call can jump
within a range of -2n-1 to 2n-1 – 1 program words, in other words -2K ≤ PC < 2K - 1
n = 12 bits, K = 210 = 1024, and a program word is 16-bits.

Long full 16 K word (32K byte) address space

Indirect full 16 K word (32K byte) address space

 Why Subroutines?

 My Little Subroutine Dictionary

 Assembly Subroutine Template

 How to Send Information to and/or from the Calling Program

 Rules for Working with Subroutines

5 | P a g e

WHY SUBROUTINES?

 Divide and Conquer – Allow you to focus on one small “chunk” of the problem at a time.

 Code Organization – Gives the code organization and structure. A small step into the world of

object-oriented programming.

 Modular and Hierarchical Design – Moves information about the program at the appropriate

level of detail.

 Code Readability – Allows others to read and understand the program in digestible “bites”

instead of all at once. Higher level subroutines with many lower level subroutine calls take on

the appearance of a high level language.

 Encapsulation – Insulates the rest of the program from changes made within a procedure.

 Team Development – Helps multiple programmers to work on the program in parallel; a first

step to configuration control. Allows a programmer to continue writing his code, independent

of other team members by introducing “stub” subroutines. A stub subroutine may be as simple

as the subroutine label followed by a return instruction.

6 | P a g e

MY LITTLE SUBROUTINE DICTIONARY

SUBROUTINE VERSUS FUNCTION1

 Functions and subroutines are the most basic building block you can use to organize your code.

 Functions are very similar to subroutines; their syntax is nearly identical, and they can both perform the same actions.

However, Functions return a value to the code that called it.

 For this course the terms Subroutine, Procedure and Method may describe a Subroutine or Function based on context.

PARAMETER VERSUS ARGUMENT2

 In everyday usage, “parameter” and “argument” are used interchangeably to refer to the things that you use to define and call

methods or functions.

 Often this interchangeability doesn’t cause ambiguity. It should be noted, though, that conventionally, they refer to different

things.

 A “parameter” is the thing used to define a method or function while an “argument” is the thing you use to call a method or

function.

Parameter:

void mySubroutine (uint8_t N){ … } N is a parameter

Argument:

uint8_t X

X = 10

mySubroutine(X) X is an argument

 Ultimately, it doesn’t really matter what you say. People will understand from the context.

1 Source: http://www.codeproject.com/KB/aspnet/VBnet_Methods.aspx
2 Source: http://project.ioni.st/post/790

http://www.codeproject.com/KB/aspnet/VBnet_Methods.aspx
http://project.ioni.st/post/790

7 | P a g e

ASSEMBLY SUBROUTINE TEMPLATE

; ---- My Subroutine -------

; Called from Somewhere

; Input: Registers, SRAM variables, or I/O registers

; Outputs: None for a subroutine or r25:r24 register pair for a C function

; No others registers or flags are modified by this subroutine

; --------------------------

MySubroutine:

 push r15 // push any flags or registers modified by the procedure

 in r15,SREG

 push r16

 my assembly code

endMySubroutine:

 clr r25 // zero-extended to 16-bits for C++ call (optional)

 pop r16 // pop any flags or registers placed on the stack

 out SREG,r15

 pop r15

 ret

8 | P a g e

HOW TO SEND INFORMATION TO AND/OR FROM THE CALLING PROGRAM

There are many way to send information to and from a subroutine or function. Here are a few…

 In Register(s) or Register Pair(s) agreed upon between the calling program and Procedure or Function.

 By setting or clearing one of the bits in SREG (I, T, H, S, V, N, Z, C).

 In an SRAM variable, this method is not recommended.

 As part of a Stack Frame, this method is beyond the scope of a course on microcontrollers but is highly recommended.

9 | P a g e

HOW TO SEND INFORMATION TO AND/OR FROM YOUR C PROGRAM

When working in a Mixed C and Assembly programming environment, our subroutines and functions communicate using Register

Pairs.

 Mixed C and Assembly parameter passing Register Pairs

In your C Program…

// C Assembly External Declarations

extern void mySubr(uint8_t param1, uint16_t param2, uint16_t param3);

extern uint8_t myFunc(uint8_t param1, uint16_t param2, uint16_t param3);

In your Assembly Program…

; Define Assembly Directives

.DEF parm1H = r25

.DEF parm1L = r24

.DEF parm2H = r23

.DEF parm2L = r22

.DEF parm3H = r21

.DEF parm3L = r20

mySubr:

 Assembly Code

 ret

 8-bit return values (uint8_t data type) are zero/sign-extended to 16-bits in r25:r24 by called function.

10 | P a g e

RULES FOR WORKING WITH SUBROUTINES

Here are a few rules to remember when writing your main program and subroutines.

 Always disable interrupts and initialize the stack pointer at the beginning of your program.

; Disable interrupts and configure stack pointer for 328P

 cli

 ldi r16,low(RAMEND) // RAMEND address 0x08ff

 out SPL,r16 // Stack Pointer Low SPL at i/o address 0x3d

 ldi r16,high(RAMEND)

 out SPH,r16 // Stack Pointer High SPH at i/o address 0x3e

 Always initialize variables and registers at the beginning of your program. Do not re-initialize I/O
registers used to configure the GPIO ports or other subsystems within a loop or a subroutine. For
example, you only need to configure the port pins assigned to the switches as inputs with pull-up
resistors once.

 Push (push r7) any registers modified by the subroutine at the beginning of the subroutine and pop
(pop r7) in reverse order the registers at the end of the subroutine. This rule does not apply if you are
using one of the registers or SREG flags to return a value to the calling program. Comments should
clearly identify which registers are modified by the subroutine.

 You cannot save the Status Register SREG directly onto the stack. Instead, first push one of the 32
registers on the stack and then save SREG in this register. Reverse the sequence at the end of the
subroutine.

push r15

in r15, SREG

:

out SREG, r15

pop r15

11 | P a g e

Rules for Working with Subroutines – Continued –

 Never jump into a subroutine. Use a call instruction (rcall, call) to start executing code at the
beginning of a subroutine.

 Never jump out of a subroutine. Your subroutine should contain a single return (ret) instruction as the
last instruction (ret = last instruction).

 You do not need an .ORG assembly directive. As long as the previous code segment ends correctly
(rjmp, ret, reti) your subroutine can start at the next address.

 You do not need to clear a register or any variable for that matter before you write to it.

clr r16 ; this line is not required

lds r16, A

 All blocks of code within the subroutine or Interrupt Service Routine (ISR) should exit the subroutine
through the pop instructions and the return (ret, reti).

 It is a good programming practice to include only one return instruction (ret, reti) located at the end
of the subroutine.

 Once again, never jump into or out of a subroutine from the main program, an interrupt service routine,
or any other subroutine. However, subroutines or ISRs may call (rcall) other subroutines.

12 | P a g e

BASIC STRUCTURE OF A SUBROUTINE – A REVIEW

1. Load argument(s) into input registers (parameters) as specified in the header of the

subroutine (typically r24, r22).

2. Call the Subroutine

3. Save an image of the calling programs CPU state by pushing all registers modified by the

subroutine, including saving SREG to a register.

4. Do something with the return value(s) stored in the output register(s) specified in the header

of the subroutine (typically r24, r22).

5. Restore image of the calling programs CPU state by popping all registers modified by the

subroutine, including loading SREG from a register.

6. Return

