An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi
Chapter 0: Introduction To Computing
Section 0.1: Number Systems and Appendix A "Number Systems" at the end of this document Section 0.2: Digital Primer

Chapter 1: The AVR Microcontroller: History and Features
Section 1.1: Microcontrollers and Embedded Processors
Chapter 2: AVR Architecture and Assembly Language Programming
Section 2.5: AVR Data Format and Directives
Section 2.6: Introduction to AVR Assembly Programming
Section 2.7: Assembling An AVR Program

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

Contents

Reading 2
What is an Embedded System? 4
The Building Blocks of an Embedded System 5
What is an Arduino? 6
What is 3DoT? 7
What is The 3DoT Maze Kit? 8
What is a Program? 9
How is Machine Code Related to Assembly Language? 10
Anatomy of an Assembly Instruction 11
Design Example 12
Development Steps 13
Help. 14

- An embedded system is an electronic system that contains at least one controlling device, i.e. "the brain", but in such a way that it is hidden from the end user. That is, the controller is embedded so far in the system that usually users don't realize its presence.
- Embedded systems perform a dedicated
 function.

What is the Controlling Device?

EE Course	Technology	Tools
EE201	Discrete Logic	Boolean Algebra
EE301	Field Programmable Gate Array (FPGA), Application-Specific Integrated Circuit (ASIC)	HDL (typically VHDL or Verilog)
EE346	Microcontroller	Program (typically C++ or Assembly)
EE443	System on a Chip (SoC)	System Level Design Language

The Building Blocks of an Embedded System

"This course will be an introduction to modern RISC based microcontrollers and assembly language programming. We will use the Atmel AVR family of microcontrollers to teach hardware design of small, minimum-component systems performing simple task-oriented activities." Source: EE346 Syllabus

What is an Arduino?

- Arduino is an open-source electronics PCB containing a microcontroller and the things needed to support it: Power Supply, Communications, Reset Button, Clock, and Connectors for adding Sensors and Actuators in the physical world.
- Using an Arduino you can develop interactive objects, taking inputs from a variety of switches or sensors, and controlling a variety of lights, motors, and other physical outputs.
- The Arduino consists of two parts; the hardware and the software.
- Our Robot Board is based on the Arduino Leonardo which contains an ATmega32U4 8 bit microcontroller.
- We will be using AVR Studio to develop the software for the Arduino in place of the
 Arduino IDE and associated Scripting Language.

What is 3Dot

3DoT (The 3D of Things) is a micro-footprint $3.5 \times 7 \mathrm{~cm}$ all-in-one Arduino compatible microcontroller board designed for robot projects by Humans for Robots.

- Microcontroller: ATmega32U4
- Bluetooth: FCC-certified BLE 5.0 module
- Power Management:
- RCR123A battery holder
- Included 600 mAh rechargeable battery
- Microchip MCP7383 battery charge controller
- External battery connector - for input voltages between 4-18V
- Reverse polarity protection - plug in the battery backwards? No problem
- Motors \& Servos:
- $2 x$ JST motor connectors

- $2 x$ standard servo connectors
- Expansion:
- 16-pin top female headers for shields - providing I/O, I ${ }^{2} \mathrm{C}, \mathrm{SPI}, \mathrm{USART}, 3.3 \mathrm{~V}$ and 5 V .
- Forward-facing 8-pin female header for sensor shields - providing 4 analog pins, $I^{2} \mathrm{C}$, and 3.3 V power - for sensor shields like infrared or metal-detecting shields. Great location for headlights, lasers, ultrasonics, etc.
- Programming switch: Three-position switch for easy programming
- No more double-tapping a button and rushing to program your board, or your robot trying to drive away while programming. Set the switch to PRG to program, RUN to execute your code.

HUMANS - \square FOR I RLBCIS

Designed by Humans for Robots for CSULB EE Digital Design and Project courses, the 3DoT Maze Kit includes almost everything needed to complete the Labs.

Kit Contents

- 3DoT PaperBot Chassis
- 3DoT Board v10.1
- Bluetooth LE module
- Wood Chassis
- Drivetrain (motors, wheels, caster)
- IR Sensor Shield
- (soldered)
- Wheel Rotary Encoder Shield
- $3 x 4 \mathrm{ft}$ Maze (Back/White, Color based on cost)

Not Included

- PaperBot Template (Free Download)
- USB-B cable
- Playing Cards (Free Download)

What is a Program?

- The Program is a "very specific list of instructions" to the computer.
- The process of "creating the program" is where much of an electrical engineer's time is spent.
- The program is often referred to as Software, while the physical system components are called Hardware. Software held within non-volatile memory is called Firmware.
- Software design is all about creating patterns of 0's and 1's in order to get the computer to do what we want. These 0's and 1's are known as Machine Code.


```
0010 0111 0000 0000 -> 1110 1111 0001 1111 -> 1011 1001 0000 0111 -> 1011 1001 0001 1000
1011 1001 0000 0100->1011 0000 0111 0110->1011 1000 0111 0101 -> 1100 1111 1111 1101
```

- The architecture of the processer (or computer) within a microcontroller is unique as are the Machine Code Instructions it understands.

```
0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0
1110 1111 0001 1111
```

- The list of Machine Code Instructions understood by a Microcontroller is known as the Machine Language.

How is Machine Code Related to Assembly Language?

Machine Code (The language of the machine)

- Binary Code (bit sequence) that directs the computer to carry out (execute) a pre-defined operation.

```
0010 0111 0000 0000
1110 1111 0001 1111
1011 1001 0000 0111
1011 1001 0001 1000
```


Assembly Language

- A computer language where there is a one-to-one correspondence between a symbolic (assembly language instruction) and a machine code instruction.
- The language of the machine in human readable form

clr r16
ser r17
out DDRC, r16
out PORTC, r17

Corollary

- Specific to a single computer or class of computers (non-portable)

Sample Code Segment

Machine Code		Assembly Code
Binary		Hex
$00100111 \quad 0000 \quad 0000$	0×2700	clr r16
1110	1111	0001
1111	$0 \times E F 1 F$	ser r17
1011	1001	0000
10111001	0001	1000

- The Operation Code or Opcode for short, is a mnemonic that tells the CPU what instruction is to be executed. In the sample code above that would be clr (clear), ser (set register), and out (output to I/O location). One or more operands follow the Opcode.
- The Operand(s) specify the location of the data that is to be operated on by the CPU. In many cases it is the Arithmetic Logic Unit (ALU) that performs the specified operation.

Design Example

Write an Assembly Program to turn a light on and off with a switch. A similar program was used in the design of The Wake-up Machine.

Development Steps

Help

```
001001110000 00002 = 270016 = clr r16...
```

An Important part of this course is understanding the Design and Language of "The Computer."
The computer implements the classical digital gate you learned in your Digital Logic class (EE201) in software with instructions like and, or, and eor.

You are also going to have to seamlessly move from binary to hexadecimal and back again (i.e., Number Systems).
Computer programs move data through Registers, so a working knowledge of Flip-Flops and Registers is also an important foundational part of this class.

Finally, instead of designing with gates (EE201) you will be designing with code. So you will need to review Programming concepts like: data transfer (assignment expressions) , arithmetic and logic operators, control transfer (branching and looping), and bit and bit test operators that you leaned in your programming class (CECS174 or CECS100).

The good news is that help is available in Chapter 0: "Introduction to Computing" of your textbook, the supplemental reading provided at the beginning of this document, the web, and Appendix A - Number Systems.

Appendix A - Number Systems

Numbers and Their Computer Representation

Introduction

Base 10 result of ten fingers
Arabic symbols 0-9, India created Zero and Positional Notation
Other Systems: Roman Numerals: essentially additive, Importance of Roman Numeral lies in whether a symbol precedes or follows another symbol. Ex. IV $=4$ versus $\mathrm{VI}=6$. This was a very clumsy system for arithmetic operations.

Positional Notation (Positive Real Integers)

Fractional numbers will not be considered but it should be noted that the addition of said would be a simple and logical addition to the theory presented.

The value of each digit is determined by its position. Note pronunciation of 256 "Two Hundred and Fifty Six?
Ex. $256=2^{*} 10^{2}+5^{*} 10^{1}+6^{*} 10^{0}$
Generalization to any base or radix
Base or Radix = Number of different digit which can occur in each position in the number system.
$N=A_{n} r^{n}+A_{n-1} r^{n-1}+\ldots+A_{1} r^{1}+A_{o} r^{0}$ (or simple $A_{1} r+A_{0}$)

Introduction to Binary System

The operation of most digital devices is binary by nature, either they are on or off.
Examples: Switch, Relay, Tube, Transistor, and TTL IC
Thus it is only logical for a digital computer to in base 2.
Note: Future devices may not have this characteristic, and this is one of the reasons the basics and theory are important. For they add flexibility to the system.

In the Binary system there are only 2 states allowed; 0 and 1 (FALSE or TRUE, OFF or ON)

Example: Most Significant Bit
\downarrow High Order Bit
$1010=1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=1010$
\uparrow Least Significant Bit \uparrow Denotes Base 10 Low Order Bit Usually implied by context
Bit $=$ One Binary Digit (0 or 1)
This positional related equation also gives us a tool for converting from a given radix to base 10 - in this example Binary to Decimal.

Base Eight and Base Sixteen

Early in the development of the digital computer Von Neuman realized the usefulness of operating in intermediate base systems such as base 8 (or Octal)

By grouping 3 binary digits or bits one octal digit is formed. Note that $2^{3}=8$
Binary to Octal Conversion Table
$\underline{2^{2} 2^{1} 2^{0}}$
$000=0$
$001=1$
$010=2$
$011=3$
$100=4$
$101=5$
$110=6$
$111=7$
Symbols (not numbers) 8 and 9 are not used in octal.
Example: 100001010110

$$
4126_{8}=4^{*} 8^{3}+1^{*} 8^{2}+2^{*} 8^{1}+6^{*} 8^{0}=2134
$$

This is another effective way of going from base 2 to base 10
Summary: Base 8 allows you to work in the language of the computer without dealing with large numbers of ones and zeros. This is made possible through the simplicity of conversion from base 8 to base 2 and back again.
In microcomputers groupings of 4 bits (as opposed to 3 bits) or base $16\left(2^{4}\right)$ is used. Originally pronounced Sexadecimal, base 16 was quickly renamed Hexadecimal (this really should be base 6).

Binary to Hex Conversion Table

$$
\begin{aligned}
& \frac{2^{3} 2^{2} 2^{1} 2^{0}}{0} \\
& 0000 \\
& 0001=0 \\
& 0010 \\
& 0010=2 \\
& 0011= \\
& 0100=4 \\
& 0101=5 \\
& 0110=6 \\
& 0111=7 \\
& 1000=8 \\
& 1001=9 \\
& 1010=A \\
& 1011= \\
& 1100=C \\
& 1101= \\
& 1101=D \\
& 1110 \\
& 1111=E
\end{aligned}
$$

In Hex Symbols for 10 to 15 are borrowed from the alphabet. This shows how relative numbers really are or in other words, they truly are just symbols.

```
Example: 100001010110
                    8 5
                    6 16 = 8*162 + 5*16 + + 6*160 = 2134
```

It is not as hard to work in base 16 as you might think, although it does take a little practice.

Conversion From Base 10 to a Given Radix (or Base)

Successive Division is best demonstrated by an example

2	43	
2	21 I	Least Significant Bit
2	10 ,	
2	5 ,	
2	2 ,	
2	1	0
	0	Most Significant Bit

To get the digits in the right order let them fall to the right.
For this example: $43_{10}=101011_{2}$
Quick Check (Octal) $101011=5^{*} 8+3=43_{10}$

Another example: Convert 4310 from decimal to Octa

$8 \longdiv { 4 3 }$
$8 \longdiv { 5 }$ 5
5 Most Significant Bit
For this example: $43_{10}=53_{8}$
Quick Check (Octal) 5*8 $+3=43_{10}$
Generalization of the procedure OR Why It Works

r	N		Least Significant Bit
r	N_{1}	A_{0}	
r	N_{2}	, A_{1}	
r	N_{3}	A_{2}	
		A_{3}	
r	$\mathrm{N}_{\mathrm{n}-1}$		
r	N_{n}	A_{n-1}	
	0	A_{n}	Most Significant Bit

Where $r=$ radix, $N=$ number, $A=$ remainder, and $n=$ the number of digits in radix r for number N. Division is normally done in base 10 .
Another way of expressing the above table is:

$$
\begin{gathered}
N=r^{*} N_{1}+A_{0} \\
N_{1}=r^{*} N_{2}+A_{1} \\
N_{2}=r^{*} N_{3}+A_{2} \\
\quad: \\
N_{n-1}=r^{*} N_{n}+A_{n-1} \\
N_{n}=r^{*} 0+A_{n}
\end{gathered}
$$

or (now for the slight of hand)

```
N = r*(r*N2 + A A ) + A0 substitute N N
N = r' N
N= r}\mp@subsup{r}{}{2}(\mp@subsup{r}{}{*}\mp@subsup{N}{3}{}+\mp@subsup{A}{2}{})+r\mp@subsup{A}{1}{}+\mp@subsup{A}{0}{}\quad\mathrm{ substitute N}\mp@subsup{N}{2}{
N=Anr n}+\mp@subsup{A}{n-1}{}\mp@subsup{r}{}{n-1}+\ldots+\mp@subsup{A}{11}{}\mp@subsup{r}{}{1}+\mp@subsup{A}{o}{}\mp@subsup{r}{}{0
```


Nomenclature

Bit	$=$	1 binary digit
Byte	$=$	8 bits
Nibble	$=$	one half byte $=4$ bits
Word	$=$	Computer Dependent

Binary Arithmetic

Binary Addition

Binary addition is performed similar to decimal addition using the following binary addition rules:
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10 \quad$ (0 with a carry of 1)

Examples:

Octal Addition

Octal addition is also performed similar to decimal addition except that each digit has a range of 0 to 7 instead of 0 to 9 .

Problem	$21_{10}+10_{10}=31_{10}$	$45_{10}+54_{10}=99_{10}$	$3_{10}+7_{10}=10_{10}$
	258	558	38
	+ 128	+ 668	+ 78
	378	1438	128
Check	$3^{*} 8^{1}+7^{*} 8^{0}$	$1^{*} 8^{2}+4^{*} 8^{1}+3^{*} 8^{0}$	$1^{*} 8^{1}+2^{*} 8^{0}$
	$3^{*} 8+7^{*} 1=31_{10}$	$64+32+3=99_{10}$	$8+2=10_{10}$

Hexadecimal Addition

Hex addition is also performed similar to decimal addition except that each digit has a range of 0 to 15 instead of 0 to 9 .

Problem	$21_{10}+10_{10}=31_{10}$	$45_{10}+54_{10}=99_{10}$	$310+7_{10}=10_{10}$
	15_{16}	$2 \mathrm{D}_{16}$	316
	$+0 \mathrm{~A}_{16}$	$+3616$	+ 716
	$1 F_{16}$	63_{16}	$\overline{A_{16}}($ not 10)
Check	$1^{*} 16^{1}+15^{*} 16^{0}$	$6^{*} 16^{1}+3^{*} 16^{0}$	$10^{*} 16^{0}$
	$16+15=31_{10}$	$96+3=99_{10}$	10_{10}

Binary Multiplication

Decimal	Binary
11_{10}	10112
x 1310	x 11012
$11_{10}{ }^{3310}$	$\begin{gathered} 1011_{2} \\ 00002 \\ 1011_{2} \end{gathered}$
14310	$\overline{10001111_{2}}$
Check	$\begin{aligned} & 8^{\star} 16^{1}+15^{\star} 16^{0} \\ & 128+15=143_{10} \end{aligned}$

Binary Division

Decimal

Check $\quad \begin{aligned} & 1^{*} 16{ }^{1}+5^{*} 16^{0} \\ & 16+5=21_{10}\end{aligned}$
$16+5=21_{10}$

Practice arithmetic operations by making problems up and then checking your answers by converting them back to base 10 via different bases (i.e., 2, 8, and 16).

How a computer performs arithmetic operations is a much more involved subject and has not been dealt with in this section.

Complements and Negative Numbers OR Adding a Sign Bit

Addition, Multiplication, and Division is nice but what about subtraction and negative numbers? From grade school you have learned that subtraction is simply the addition of a negative number. Mathematicians along with engineers have exploited this principle along with modulo arithmetic - a natural outgrowth of adders of finite width - to allow computers to operate on negative numbers without adding any new hardware elements to the arithmetic logic unit (ALU).

Sign Magnitude

Here is a simple solution, just add a sign bit. To implement this solution in hardware you will need to create a subtractor; which means more money.
sign magnitude
Example: -2 = 1
00102

Ones Complement
Here is a solution that is a little more complex. Add the sign bit and invert each bit making up the magnitude - simply change the 1 's to 0's and the 0's to 1 's.
sign magnitude
Example: -2 $\quad 1101_{2}$

To subtract in 1's complement you simply add the sign and magnitude bits letting the last carry bit (from the sign) fall into the bit bucket, and then add 1 to the answer. Once again let the last carry bit fall into the bit bucket. The bit bucket is possible due to the physical size of the adder.

01010_{2}	10	
$+\quad 11101_{2}$	$+(-2)$	
01000_{2}	8	
+	12	Adjustment

01001_{2}

Although you can now use your hardware adder to subtract numbers, you now need to add 1 to the answer. This again means adding hardware. Compounding this problem, ones complement allows two numbers to equal 0 (schizophrenic zero).

Twos Complement

Here is a solution that is a little more complex to set up, but needs no adjustments at the end of the addition. There are two ways to take the twos complement of a number.

Method $1=$ Take the 1 's complement and add 1

```
000102 2 
+ 111012 1's complement (i.e. invert)
+ 12 add 1
111102
Method 2 = Move from right to left until a 1 is encountered then invert.
000102 start 210
    O2 no change
    102 no change but one is encountered
    1102 invert change 0 to 1
    11102 invert change 0 to 1
111102 invert & change 0 to 1
```

Subtraction in twos complement is the same as addition. No adjustment is needed, and twos complement has no schizophrenic zero although it does have an additional negative number (see How It Works).

01010_{2}	10
$+\quad 11110_{2}$	$+(-2)$
01001_{2}	8

Examples:

Problem	$33_{10}-19_{10}=14_{10}$	$69_{10}-84_{10}=-15_{10}$
	01000012^{2}	010001012^{2}
	+ 1101101_{2}	+ 101011002
	0001110_{2}	11110001_{2}
Check	convert to intermediate base $E_{16}=1_{10}$	convert back to sign magnitude -0001111_{2} convert to intermediate base (16) $-F_{16}=-15_{10}$

Why It Works

Real adders have a finite number of bits, which leads naturally to modulo arithmetic — the bit bucket.

Overflow
With arithmetic now reduced to going around in circles, positive numbers can add up to negative and vice-versa. Two tests provide a quick check on whether or not an "Overflow" condition exists.

Test $1=$ If the two numbers are negative and the answer is positive, an overflow has occurred.
Test $2=$ If the two number are positive and the answer is negative, an overflow has occurred.

If computers were calculators and the world was a perfect place, we would be done. But they are not and so we continue by looking at a few real world problems and their solutions.

Character Codes OR Non-Numeric Information

Decimal Number Problem

Represent a Decimal Numbers in a Binary Computer. A binary representation of a decimal number, a few years ago, might have been "hard wired" into the arithmetic logic unit (ALU) of the computer. Today it, more likely than not, is simply representing some information that is naturally represented in base 10, for example your student ID.

Solution
In this problem, ten different digits need to be represented. Using 4 bits 2^{4} or 16 combinations can be created. Using 3 bits 2^{3} or 8 combinations can be created. Thus 4 bits will be required to represent one Decimal Digit. It should here be pointed out how 16 combinations can be created from 4 bits (0000-1111) while the largest numeric value that can be represented is 15 . The reason that the highest numeric value and the number of combinations are different, is due to zero (0) being one of the combinations. This difference points up the need to always keep track of wetter or not you are working zero or one relative and what exactly you are after - a binary number or combinations.

The most common way of representing a decimal number is named Binary Coded Decimal (BCD). Here each binary number corresponds to its decimal equivalent, with numbers larger than 9 simply not allowed. BCD is also known as an 8-4-2-1 code since each number represents the respective weights of the binary digits. In contrast the Excess-3 code is an unweighted code used in earlier computers. Its code assignment comes from the corresponding BCD code plus 3. The Excess-3 code had the advantage that by complementing each digit of the binary code representation of a decimal digit (1's complement), the 9's complement of that digit would be formed. The following table lists each decimal digit and its BCD and Excess-3 code equivalent representation. I have also included the negative equivalent of each decimal digit encoded using the Excess-3 code. For instance, the complement of 0100 (1 decimal) is 1011, which is 8 decimal. You can find more decimal codes on page 18 of "Digital Design" by M. Morris Mano (course text).

Binary Coded Decimal (BCD)		Excess-3		
Decimal Digit	Binary Code $8-4-2-1$	Decimal Digit	Binary Code	9's Compliment
0	0000	N/A	0000	1111
1	0001	N/A	0001	1110
2	0010	N/A	0010	1101
3	0011	0	0011	1100
4	0100	1	0100	1011

5	0101	2	0101	1010
6	0110	3	0110	1001
7	0111	4	0111	1000
8	1000	5	1000	0111
9	1001	6	1001	010
N/A	1010	7	1010	0101
N/A	1011	8	1011	0100
N/A	1100	9	1100	0011
N/A	1101	N/A	1101	0010
N/A	1110	N/A	1110	0001
N/A	1111	N/A	1111	0000

Alphanumeric Character Problem

Represent Alphanumeric data (lower and upper case letters of the alphabet (a-z, A-Z), digital numbers ($0-9$), and special symbols (carriage return, line feed, period, etc.).

Solution

To represent the upper and lower case letters of the alphabet, plus ten numbers, you need at least $62(2 \times 26+10)$ unique combinations. Although a code using only six binary digits providing 2^{6} or 64 unique combinations would work, only 2 combinations would be left for special symbols. On the other hand a code using 7 bits provides 2^{7} or 128 combinations, which provides more than enough room for the alphabet, numbers, and special symbols. So who decides which binary combinations correspond to what character. Here there is no "best way." About thirty years ago IBM came out with a new series of computers which used 8 bits to store one character ($2^{8}=256$ combinations), and devised the Extended Binary-Coded Decimal Interchange Code (EBCDIC pronounced ep-su-dec) for this purpose. Since IBM had a near monopoly on the computer field, at that time, the other computer makers refused to adopt EBCDIC, and that is how the 7bit American Standard Code for Information Interchange (ASCII) came into existence. ASCII has now been adopted by virtually all micro-computer and mini-computer manufacturers. The table below shows a partial list of the ASCII code. Page 23 of the text lists all 128 codes with explanations of the control characters.

DEC	HEX	CHAR	DEC	HEX	CHAR
32	20		64	40	@
33	21	$!$	65	41	A
34	22	$"$	66	42	B
35	23	$\#$	67	43	C
36	24	$\$$	68	44	D
37	25	$\%$	69	45	E
38	26	$\&$	70	46	F
39	27	4	71	47	G
40	28	$($	72	48	H

41	29	$)^{*}$	73	49	I
42	2 A	$*$	74	4 A	J
43	2 B	+	75	4 B	K
44	2 C	,	76	4 C	L
45	2 D	-	77	4 D	M
46	2 E	$*$	78	4 E	N
47	2 F	$/$	79	4 F	O
48	30	0	80	50	P
49	31	1	81	51	Q
50	32	2	82	52	R
51	33	3	83	53	S
52	34	4	84	54	T
53	35	5	85	55	U
54	36	6	86	56	V
55	37	7	87	57	W
56	38	8	88	58	X
57	39	9	89	59	Y
58	3 A	$:$	90	5 A	Z
59	$3 B$	$;$	91	5 B	C
60	3 C	$<$	92	5 C	I
61	3 D	$=$	93	5 D	$]$
62	3 E	$>$	94	5 E	\wedge
63	3 F	$?$	95	5 F	-

The word "string" is commonly used to describe a sequence of characters stored via their numeric codes — like ASCII).

Although ASCII requires only 7 bits, the standard in computers is to use 8 bits, where the leftmost bit is set to 0 . This allows you to code another 128 characters (including such things as Greek letters), giving you an extended character set, simply by letting the leftmost bit be a 1. This can also lead to a computer version of the tower of Babel. Alternatively, the leftmost bit can be used for detecting errors when transmitting characters over a telephone line. Which brings us to our next problem.

Synthesis
Although ASCII solves the communication problem between English speaking computers, what about Japanese, Chinese, or Russian computers which have different, and in all these examples, larger alphabets?

Communication Problem

Binary information may be transmitted serially (one bit at a time) through some form of communication medium such as a telephone line or a radio wave. Any external noise introduced into the medium can change bit values from 1 to 0 or visa versa.

The simplest and most common solution to the communication problem involves adding a parity bit to the information being sent. The function of the parity bit is to make the total number of 1's being sent either odd (odd parity) or even (even parity). Thus, if any odd number of 1's were sent but an even number of 1's received, you know an error has occurred. The table below illustrates the appropriate parity bit (odd and even) that would be appended to a 4-bit chunk of data.

Synthesis

What happens if two binary digits change bit values? Can a system be devised to not only detect errors but to identify and correct the bit(s) that have changed? One of the most common error-correcting codes was developed by R.W. Hamming. His solution, known as a Hamming code, can be found in a very diverse set of places from a Random Access Memory (RAM) circuit to a Spacecraft telecommunications link. For more of error correcting codes read pages 299 to 302 of the text.

Although detecting errors is nice, preventing them from occurring is even better. Which of course brings us to our next problem.

Shaft Encoder Problem

As a shaft turns, you need to convert its radial position into a binary coded digital number.

Solution

The type of coder which will be briefly described below converts a shaft position to a binary-coded digital number. A number of different types of devices will perform this conversion; the type described is representative of the devices now in use, and it should be realized that more complicated coders may yield additional accuracy. Also, it is generally possible to convert a physical position into an electric analog-type signal and then convert this signal to a digital system. In general, though, more direct and accurate coders can be constructed by eliminating the intermediate step of converting a physical position to an analog electric signal. The Figure below illustrates a coded-segment disk which is coupled to the shaft.

Output at brushes

(a)

Binary coded disk

(b)

Unit distance code disk

The shaft encoder can be physically realized using electro-mechanical (brush) or electro-optical technology. Assuming an electro-optical solution, the coder disk is constructed with bands divided into transparent segments (the shaded areas) and opaque segments (the unshaded areas). A light source is put on one side of the disk, and a set of four photoelectric cells on the other side, arranged so that one cell is behind each band of the coder disk. If a transparent segment is between the light source and a light-sensitive cell, a 1 output will result; and if an opaque area is in front of the photoelectric cell, there will be a O output.

There is one basic difficulty with the coder illustrated: if the disk is in a position where the output number is changing from 011 to 100 , or in any position where several bits are changing value, the output signal may become ambiguous. As with any physically realized device, no matter how carefully it is made, the coder will have erroneous outputs in several positions. If this occurs when 011 is changing to 100 , several errors are possible; the value may be read as 111 or 000 , either of which is a value with considerable errors. To circumvent this difficulty, engineers use a "Gray," or "unit distance," code to form the coder disk (see previous Figure). In this code, 2 bits never change value in successive coded binary numbers. Using a Gray coded disk, a 6 may be read as 7 , or a 4 as 5 , but larger errors will not be made. The Table below shows a listing of a 4-bit Gray code.

Decimal	Gray Code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

Synthesis

Gray code is used in a multitude of application other than shaft encoders. For example, CMOS circuits draw the most current when they are switching. If a large number of circuits switch at the same time unwelcome phenomena such as "Ground Bounce" and "EMI Noise" can result. If the transistors are switching due to some sequential phenomena (like counting), then these unwelcome visitors can be minimized by replacing a weighted binary code by a Gray code.

If the inputs to a binary machine are from an encoder using a Gray code, each word must be converted to conventional binary or binary-coded decimal bit equivalent. How can this be done? Before you can answer this question, you will need to learn about Boolean Algebra - what a coincidence, that's the topic of the next Section.

Appendix B - ATmega Instruction Set ${ }^{1}$

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd}+\mathrm{Fd}+\mathrm{Rr}$	z.C.N.V.H	1
ADC	Rd, Rr	Add with Cary two Registers	$\mathrm{Rd}+$ - $\mathrm{Ad}+\mathrm{Rr}+\mathrm{C}$	z.c.N., V, H	1
ADIW	Ral. K	Add Immediate to Word	Rdh:Rdl + Rdal:Rdal +K	Z.C.N.V.S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd}+$ Rd -Rr	z.c.N.v. H	1
SUBI	Ad, K	Subtract Constant from Register	$\mathrm{Rd}+\mathrm{Rd}$ - K	z.C.N.V., H	1
SBC	Rd, Rr	Subtract with Carry too Registers	$\mathrm{Rd}+\mathrm{Rd}$ - $\mathrm{Rr}-\mathrm{C}$		1
SBCl	Rd, K	Subtract with Carry Constant trom Reg.	$\mathrm{Rd}+\mathrm{Rd}$ - $\mathrm{K}-\mathrm{C}$	z.C., , , , , H	1
SBIW	Ral. K	Subtract Immediate from Word	Rdh:Rdil + Radn:Rdl - K	Z.C.N. V. S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd}+\mathrm{Rd} \cdot \mathrm{Rr}$	Z.N.V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd \leftarrow Rd \bullet K	Z.N.V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd}+\mathrm{Rdv} \mathrm{Fr}$	ZN.V	1
ORI	Rd, K	Logical OR Register and Constant	Rdt-RdvK	Z.N.V	1
EOR	Rd, Rr	Exalusive OR Registers	$\mathrm{Rd}+\mathrm{Rd} \oplus \mathrm{Rr}$	Z.N.V	1
COM	Rd	One's Complement	Rd +0 XFFF - Rd	Z.C.N.V	1
NEG	Rd	Two's Complement	$\mathrm{Rd}+0 \times 00-\mathrm{Rd}$	z.c.N.V.,	1
SBR	Rd, K	Set Bits) in Register	$\mathrm{Rd}+$ ¢ $\mathrm{d} v \mathrm{~K}$	Z.N.V	1
CBR	Rd, K	Clear Bilis) in Register	$\mathrm{Rd}+\mathrm{Rd} \cdot(0 \mathrm{x}$ FF-K)	Z.N.V	1
INC	Rd	Increment	$\mathrm{Rd}+$ ¢ $\mathrm{d}+1$	Z.N.V	1
DEC	Rd	Decrement	Rd \leftarrow Rd -1	Z.N.V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd}+\mathrm{Rd} \cdot \mathrm{Rd}$	ZN,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	ZN, V	1
SER	Rd	Set Register	Rd $+0 \times \mathrm{FF}$	None	1
MUL	Rd, Rr	Muliply Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	z.c	2
MULS	Rd, Rr	Muliply Signed	R1: $\mathrm{R} 0 \leftarrow \mathrm{Rdx} \times \mathrm{Rr}$	z.c	2
MULSU	Rd, Rr	Muliply Signed with Unsigned	R1:R0¢ $\mathrm{Ad} \times \mathrm{Rr}$	z, C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1: $\mathrm{R} 0 \leftarrow(\mathrm{Pd} \times \mathrm{Ar}) \ll 1$	z.c	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1: $\mathrm{P} 0 \leftarrow(\mathrm{Pd} \times \mathrm{ARF}) \ll 1$	z, C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R1}: \mathrm{R0} ¢(\mathrm{Pd} \times \mathrm{Ar}) \ll 1$	2.c	2
BRANCH INSTRUCTIONS					
AJMP	k	Relative Jump	PC + PC + $\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	PC +Z	None	2
JMP(1)	k	Direct Jump	PC+k	None	3
ACALL	k	Relative Subroutine Call	$\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC}+\mathrm{Z}$	None	3
CALL ${ }^{(3)}$	k	Direct Subroutine Call	PC+k	None	4
RET		Subroutine Return	PC+STACK	None	4
RETI		Interupt Return	PC+STACK	,	4
CPSE	Ad,Rr	Compare, Skip it Equal	$\mathrm{i}(\mathrm{Rd}=\mathrm{Ar}) \mathrm{PC}+\mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Ar}$	Z N., V.,.,	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Ar}-\mathrm{C}$	Z , N, , , , , , H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z.N.V.C.H	1
SBRC	Rr, b	Skip it Bit in Register Cleared	if ($\mathrm{Pr}(\mathrm{l}(\mathrm{b})=0 \mathrm{PC}+\mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip i\# Bit in Regisiter is Set	$i\left(\begin{array}{l}\text { (} \\ \text { (}\end{array}\right.$ ($)=1$) $\mathrm{PC}+\mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P.b	Skip if Bit in VO Register Cleared	if $(P(\mathrm{P})=0 \mathrm{P}) \mathrm{PC}+\mathrm{PC}+2$ or 3	None	1/2/3
SBls	P, b	Skip i\# Bitin VOO Register is Set	$i f(P(\mathrm{P})=1) \mathrm{PC}+\mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s,k	Branch if Staus Flag Set	if (SREG(s) $=1$) then PC \leftarrow PC $+\mathrm{k}+1$	None	1/2
BRBC	s.k	Branch if Status Flag Cleared	ii (SREGG(s) $=0$) then PC \leftarrow PC $+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(\mathrm{Z}=1$) then $\mathrm{PC}+\ldots \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(\mathrm{Z}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch it Cary Set	$i f(C=1)$ then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch it Cary Cleared	if $(\mathrm{C}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if $(\mathrm{C}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch iltower	if $(C=1)$ then $P C+P C+k+1$	None	1/2
BRMI	k	Branch it Minus	if $(\mathbb{N}=1)$ then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if $(\mathrm{N}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	$\mathrm{i}(\mathbb{N} \oplus \mathrm{V}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Lesss Than Zero. Signed	if $(\mathbb{N} \oplus \mathrm{V}=1$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Halli Carry Flag Set	$i f(H=1)$ then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Hall Cary Flag Cleared	if $(\mathrm{H}=0$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch it Flag Set	if $(T=1)$ then $P C+P C+k+1$	None	1/2
BRTC	k	Branch it Flag Cleared	if $(\mathrm{T}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overilow Flag is Set	if $(\mathrm{V}=1$) then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
briva				None	$1 / 2$

${ }^{1}$ Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod documents/8161S.pdf Chapter 31 Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BAIE	k	Branch if interrupt Enabled	if $(1=1)$ then $\mathrm{PC}+\mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	$i f(1=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P.b	Set Bit in VO Register	$10(P, 0) \leqslant 1$	None	2
CBI	P.b	Clear Bit in UO Register	$10(P, b) \leftarrow 0$	None	2
LSL	Rd	Logical Shit Left	$\mathrm{Rd}(\mathrm{n}+1) \leqslant \operatorname{Rd}(\mathrm{n})$. $\mathrm{Ad}(0)+0$	Z.C.N.V	1
LSR	Rd	Logical Shit Right	$\mathrm{Rd}(\mathrm{n})<\mathrm{Ad}(\mathrm{n}+1) . \mathrm{Ad}(7) \div 0$	Z.C.N.V	1
ROL	Rd	Rotate Left Through Cary	$\mathrm{Rd}(0)-\mathrm{C}, \mathrm{Rd}(\underline{(n+1)} \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \mathrm{Rd}(7)$	Z.C.N., V	1
HOR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow C . \mathrm{Ad}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \mathrm{Rd}(0)$	Z,C,N, V	1
ASR	Rd	Arithmetic Shitt light	$\mathrm{Rd}(\mathrm{n})$ - $\mathrm{Rd}(\mathrm{n}+1) . \mathrm{n}=0.6$	Z.C.N.V	1
SWAP	Rd	Swap Nibbles	$\mathrm{Rd}(3.0) \leftarrow \mathrm{Pd}(7.4) . \mathrm{Rd}(7.4) \leftarrow \mathrm{Rd}(3.0)$	None	1
BSET	s	Flag Set	SREG(s) <1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) -0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow$ Rr(b)	T	1
BLD	Rd. b	Bit load from T to Register	$\mathrm{Rd}(\mathrm{b})-T$	None	1
SEC		Set Cary	$\mathrm{C}+1$	c	1
CLC		Clear Carry	C ¢ 0	c	1
SEN		Set Negative Flag	$\mathrm{N}+1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	z+1	z	1
CLZ		Clear Zero Flag	z+0	z	1
SEI		Gibbal Interupt Enable	$1+1$	1	1
CLI		Gibbal Interupt Disable	$1+0$	1	1
SES		Set Signed Test Flag	S¢1	s	1
CLS		Clear Signed Test Flag	$\mathrm{S}+0$	s	1
SEV		Set Twos Complement Overifow.	V ¢1	v	1
CLV		Clear Twos Complement Overriow	V ¢0	v	1
SET		Set T in SREG	T+1	T	1
CLT		Clear T in SREG	Tヶ0	T	1
SEH		Set Hall Carry Flag in SREG	H+1	H	1
CLH		Clear Halif Cary Flag in SREG	H+0	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd}+\mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	Rd $+1: \mathrm{Rd}+$ R $\mathrm{R}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd}+\mathrm{K}$	None	1
LD	Rd, X	Load lindirect	Rd $\leftarrow\left(x^{\prime}\right)$	None	2
LD	Rd, $\mathrm{X}+$	Load lidirect and Post-linc.	Rd $\leftarrow(\mathrm{x}) \cdot \mathrm{x}+\mathrm{x}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$x+x-1, \mathrm{Rd}+(\mathrm{x})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd}+(\mathrm{Y})$	None	2
LD	Rd, Y_{+}	Load Indirect and Post-lnc.	R $d+(Y), Y \leftarrow Y+1$	None	2
LD	Rd, $-Y$	Load lidirect and Pre-Dec.	$Y \leftarrow Y-1, \mathrm{Rd}+(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd}+(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Ad}+(\mathrm{Z})$	None	2
LD	Rd, Z +	Load Indirect and Post-linc.	$\mathrm{Rd}+(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -z	Load Indirect and Pre-Dec.	Z \leftarrow - $-1, \mathrm{Rd}+(\mathrm{z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd}+(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd}+(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{x})+\mathrm{Rr}$	None	2
ST	X +, Ar	Store Indirect and Post-linc.	(x) $-\operatorname{Rr}, \mathrm{x}+\mathrm{x}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$x \leftarrow x-1,(x) \leftarrow$ Rr	None	2
ST	Y, Rr	Store Indirect	(M) -Rr	None	2
ST	Y Y, Ar	Store Indirect and Post-Inc.	(Y) - Rr, $Y+Y+1$	None	2
ST	- Y , Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y-1,(Y) \leftarrow R r$	None	2
STD	$Y+q, R \mathrm{r}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q})+\mathrm{Ar}$	None	2
ST	Z, Rr	Store Indirect	(z) -Rr	None	2
ST	Z , Rr	Store Indirect and Post-Inc.	(Z) $-\mathrm{Rr}, \mathrm{Z}+\mathrm{Z}+1$	None	2
ST	- Z , Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z q . Ar	Store Indirect with Displacement	$(z+q) \leftarrow$ Rr	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0+(\mathrm{z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd}+(\mathrm{Z})$	None	3
LPM	Rd, Z +	Load Program Memory and Post-lnc	$\mathrm{Rd}+(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	(Z) - R1: AO	None	.
IN	Rd, P	In Port	$\mathrm{Rd}+\mathrm{P}$	None	1
OUT	P. Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Br	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
POP	Rd	Pop Register from Stack	Rd ¢STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168PA and ATmega328P.

