EE 346 Microprocessor Principles and Applications

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

1|Page

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

READING

the avr
microcentroller
and embedded

systems
using assembly and ¢

The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 0: Introduction To Computing
Section 0.1: Number Systems and Appendix A “Number Systems” at the end of this document
Section 0.2: Digital Primer
Chapter 1: The AVR Microcontroller: History and Features
Section 1.1: Microcontrollers and Embedded Processors
Chapter 2: AVR Architecture and Assembly Language Programming
Section 2.5: AVR Data Format and Directives
Section 2.6: Introduction to AVR Assembly Programming

Section 2.7: Assembling An AVR Program

2|Page

http://www.pearsonhighered.com/educator/product/AVR-Microcontroller-and-Embedded-Systems-Using-Assembly-and-C/9780138003319.page

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

CONTENTS
=T Yo L3-S TSRS 2
LAV LaE LR Tl] o YT [[T B3] =T I PP 4
The Building Blocks of an EMbBedded SYStEM..............ooiiiiiiiiiiie et e et e e e s bt e e e s bte e e e s bteeeesastaeesanseeeeeasteeaesastaeeesassaeessnsseeasans 5
WAL iS @N AFQUINO?ottt et b e e bt e e sttt e shbeesubeesabeeesabeesabeeaasteesabeeaasbeesabeeeabeeesabeesab e e easbeesabeeeabaeaaseeeaseeesabeesabeeennbeesabaeennseanas 6
WAt 08 BDIOT? ...ttt ettt ettt e sttt e e bt e e sttt e s bt e e subeesabteeabeeesabeeeaabeesaseesabeeesabeeaas e e e aseeesabeeeaseeeaabeeeabeeesabeeaas e e e st e e sabeeenabeesaseesabeeesabeenabeeennbeesabeeesareanas 7
What iS The 3D0OT IMIAze KIt?c..ooiiiiiiiieiie ettt st h et e et e et e e bt e bt e saeesa b e e a bt e bt e bt e bt e ebeeeaeeeaeeeab e e beeeheesaeesateeabeeabe e beeaneesmeeeneeenseenseens 8
L1 L3 LRI T o 0T -4 =T U R 9
How is Machine Code Related to ASSembBIly LANGUAGE?...........ccccuiiiiiiiiii ettt e e et e e e e st e e e e e tb e e e eaastaeeeatbaeeeassaeeeassbaeeeansbasesastaeeeennsenesannsens 10
Anatomy Of an AsSEMbBIY INSEIUCHIONooooiiii et e e e et e e e et e e e e ebeeeeeebeeeeeabeeseeaaseeaaeanseseesanssaseeastsaesassseeeasteeaeaassanaeanns 11
DESIZN EXAMPIE ...ttt ee e e e ettt e e e e ttee e e et baeeeeaasasee e ssseee e ssaee e e asseeaassseeeeanssaeesanssaseeanssaeeeansbeeeeasbaeeeanbaeeeasbeeeeanataeeeanntaeeeannrees 12
[0V Y FoY Yy o 1T o L A =Y o1 TR 13
=1 T R 14

3|Page

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

WHAT IS AN EMBEDDED SYSTEM?

e An embedded system is an electronic system

Controller
i)) “The Brain”
that contains at least one controlling device, Input
Peripheral
i.e. “the brain”, but in such a way that it is Device

hidden from the end user. That is, the
controller is embedded so far in the system

that usually users don’t realize its presence.

e Embedded systems perform a dedicated

List of detailed

instructions.
function.
What is the Controlling Device?
EE Course | Technology Tools

EE201 Discrete Logic

Boolean Algebra

EE301 Field Programmable Gate Array (FPGA),
Application-Specific Integrated Circuit (ASIC)

HDL (typically VHDL or Verilog)

EE346 Microcontroller

Program (typically C++ or Assembly)

EE443 System on a Chip (SoC)

System Level Design Language

Output

Peripheral

Device

4|Page

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

THE BUILDING BLOCKS OF AN EMBEDDED SYSTEM

“This course will be an introduction to modern RISC based microcontrollers and assembly language programming.
We will use the Atmel AVR family of microcontrollers to teach hardware design of small, minimum-component
systems performing simple task-oriented activities.” Source: EE346 Syllabus

3DoT Embedded System

Power Supply / ATmega32U4 Microcontroller
"
Battery 22 AVR CPU
Charger M_O‘tOI"
I I I 1 Drivers
4% 27 ..¥0 A5 27 YO
= | Li-ion [Frooamcounr]
= Battery I [
12 ¥
45 ... 87 ... O Merqory 765 % 43240
Flash Program SRAM
-
I _t =
n P “ &PIO Port)// g GPIO Port B
g = g
DDR Register = : DDR Res\'ster//
= /,—-—-——-—_.___\ 7 &5 43340 Y16 416 8 ¥ 6% 43940
u pUEENEENEE) o [T TTTIT]
A5 87 .. 0 3 General Purpose
7 6543240 A R4 < 765943

R4S
Ri16) 2 6 5 4 3 2 41 O

Data Bus

Port Register
F 6543 240

Indirect Addressin

. 8 F

b}
T
Q
9
@
o

Control Lines

<
o
=
U
3
5
b
£
&

15

ITHSYNZC

USB Port SRES ALU
p
_@ 4@ EH-MC17 T USART Crystal
2o - | Control | Datapath |
=) Bluetooth | I ' |
v4.0 BLE
Modale SPI ADC Timers

5|Page

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

WHAT IS AN ARDUINO?

Arduino is an open-source electronics PCB containing a microcontroller and the things needed to support it: Power Supply,

Communications, Reset Button, Clock, and Connectors for adding Sensors and Actuators in the physical world.

Using an Arduino you can develop interactive objects, taking inputs from a variety of

switches or sensors, and controlling a variety of lights, motors, and other physical outputs.
The Arduino consists of two parts; the hardware and the software.

o Our Robot Board is based on the Arduino Leonardo which contains an ATmega32U4

8 bit microcontroller.

o We will be using AVR Studio to develop the software for the Arduino in place of the

Arduino IDE and associated Scripting Language.

6|Page

WHAT IS 3DoT

3DoT (The 3D of Things) is a micro-footprint 3.5 x 7 cm all-in-one Arduino compatible microcontroller board
designed for robot projects by Humans for Robots.

o "o o™~

HUMANS .

NN /FOR/ RN/

;.ﬁnaurﬁ

", JDoTwO

e Microcontroller: ATmega32U4
o Bluetooth: FCC-certified BLE 5.0 module
« Power Management:

« RCR123A battery holder

« Included 600 mAh rechargeable battery

do‘acus.
-

« Microchip MCP7383 battery charge controller
o External battery connector — for input voltages
between 4 -18 'V

« Reverse polarity protection — plug in the
battery backwards? No problem

e Motors & Servos:
e 2xJST motor connectors

e 2x standard servo connectors

o Expansion:
« 16-pin top female headers for shields — providing 1/0, 12C, SPI, USART, 3.3 Vand 5 V.

. Forward-facing 8-pin female header for sensor shields — providing 4 analog pins, 12C, and 3.3 V power
— for sensor shields like infrared or metal-detecting shields. Great location for headlights, lasers,
ultrasonics, etc.
o Programming switch: Three-position switch for easy programming

« No more double-tapping a button and rushing to program your board, or your robot trying to drive
away while programming. Set the switch to PRG to program, RUN to execute your code.

7|Page

https://www.mouser.com/datasheet/2/268/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet-1315135.pdf
https://www.mouser.com/datasheet/2/268/20001984g-846362.pdf
https://www.arxterra.com/wp-content/uploads/2018/08/3dot-front-back-01_png_project-body.jpg

HUMANS

HF FOR I F¥ WHAT IS THE 3DOT MAZE KiT?

ROBONS

Designed by Humans for Robots for CSULB EE Digital Design and Project courses, the 3DoT Maze
Kit includes almost everything needed to
complete the Labs.

KiIT CONTENTS
e 3DoT PaperBot Chassis
o 3DoT Board v10.1
o Bluetooth LE module
o Wood Chassis
o Drivetrain (motors, wheels,
caster)

(soldered)

Wheel Rotary Encoder Shield
3x4 ft Maze (Back/White, Color
based on cost)

NOT INCLUDED
e PaperBot Template (Free Download)
e USB-B cable
e Playing Cards (Free Download)

8|Page

https://www.humansforrobots.com/product/ir-sensor-shield/

WHAT IS A PROGRAM?

The Program is a “very specific list of instructions” to the computer.
The process of “creating the program” is where much of an electrical engineer’s time is spent.

The program is often referred to as
Software, while the physical system
components are called Hardware. Software

held within non-volatile memory is called

| !
L e o~ =

F' ESERESE e o I I 3 o o
irmware. T T I -
Software design is all about creating ‘ | 3 DT

. » .
e o

patterns of 0’s and 1’s in order to get the

computer to do what we want. These 0's

and 1's are known as Machine Code.

0010 0111 0000 0000 - 1110 1111 0001 1111 - 1011 1001 0000 0111 - 1011 1001 0OOO1 1000
1011 1001 0000 0100 — 1011 0OOO 0111 0110 - 1011 1000 O111 0101 - 1100 1111 1111 1101

The architecture of the processer (or computer) within a microcontroller is unique as are the Machine Code

Instructions it understands.

0010 0111 0000 00O0O
1110 1111 0001 1111

The list of Machine Code Instructions understood by a Microcontroller is known as the Machine Language.

9|Page

How IS MACHINE CODE RELATED TO ASSEMBLY LANGUAGE?

Machine Code (The language of the machine)

e Binary Code (bit sequence) that directs the computer to carry

out (execute) a pre-defined operation.

0010 0111 0000 0000
1110 1111 0001 1111
1011 1001 0000 0111
1011 1001 0001 1000

Assembly Language
e A computer language where there is a one-to-one
correspondence between a symbolic (assembly language

instruction) and a machine code instruction.

e The language of the machine in human readable form

clr rlo
ser rl’/
out DDRC, rlo6
out PORTC, rl7

Corollary

e Specific to a single computer or class of computers (non-portable)

10| Page

ANATOMY OF AN ASSEMBLY INSTRUCTION

Sample Code Segment

Machine Code Assembly Code
Binary Hex

0010 0111 0000 0000 0x2700 clr rleé

1110 1111 0001 1111 OxXEF1F ser rl7

1011 1001 0000 0111 0xB907 out DDRC, rlé6
1011 1001 0001 1000 0xB918 out PORTC, rl7

e The Operation Code or Opcode for short, is a mnemonic that tells the CPU what instruction is to be
executed. In the sample code above that would be c1r (clear), ser (setregister), and out (output to
I/O location). One or more operands follow the Opcode.

e The Operand(s) specify the location of the data that is to be operated on by the CPU. In many cases it is
the Arithmetic Logic Unit (ALU) that performs the specified operation.

11 |Page

DESIGN EXAMPLE

Write an Assembly Program to turn a light on and off with a switch. A similar program was used in
the design of The Wake-up Machine.

ATmega 328P

+5v

Port C bit 0 input

pull-up resistor Discreet Test
Switch 0 LED O
up
PINC PORTB
Software Wire

12| Page

https://www.youtube.com/watch?v=mXLzfAHl4-k

DEVELOPMENT STEPS

Idea

Coufigare General Purpose N0 Port € as an iunput wuith a pali-up wesiston,
Coufigare General Purpose NO Poxt T as an outbut,

oad seniteh into a veglsles

State vegister ta the (ight

Repeat Load and Stove

Flowchart or
Pseudo-code

Test LED 0 and 1

Editor ’ Register, Port C
out PORTC, r17? /7 Output R17 to I/0 Port C Register, Port C
out DDRB, rlé /7 Output R16 to I/0 Data Direction Register, Port B

Sof tware Wire
Source (.asm) File loop:
/ in r7?, PINC /7 Input port C pins (0x09) into register R7

out PORTB, r7 /7 Output to Port B from register R7

Build target rimp loo
ser r egister
out DDRC, rlé 77 Output R16 to I/0 Data Direction Register, Port C

out PORTC, r17? /7 Output R17 to I/0 Port C Register. Port C

R Sg.:’g;(;:t i Object (.obj) File out DDRB, rl6 // Output R16 to I/0 Data Direction Register., Port B
Einbianmon List {.Ist) File ;e e

loop:

in x7. PINC // Input port C pins (0x09) into register R7
Debug out PORTB., r? // Output to Port B from register R7
rjmp loop

Download (.hex) File

! ! AVR Dude

Atmel ATmega328P

13| Page

HELP

0010 0111 0000 0000; = 270016 = clr r16...

An Important part of this course is understanding the Design and Language of "The Computer.”

The computer implements the classical digital gate you learned in your Digital Logic class (EE201) in software with

instructions like and, or, and eor.
You are also going to have to seamlessly move from binary to hexadecimal and back again (i.e., Number Systems).

Computer programs move data through Registers, so a working knowledge of Flip-Flops and Registers is also an

important foundational part of this class.

Finally, instead of designing with gates (EE201) you will be designing with code. So you will need to review
Programming concepts like: data transfer (assignment expressions) , arithmetic and logic operators, control

transfer (branching and looping), and bit and bit test operators that you leaned in your programming class

(CECS174 or CECS100).

The good news is that help is available in Chapter 0: “Introduction to Computing” of your textbook, the

supplemental reading provided at the beginning of this document, the web, and Appendix A - Number Systems.

14| Page

APPENDIX A — NUMBER SYSTEMS

Numbers and Their Computer Representation

INTRODUCTION
Base 10 result of ten fingers
Arabic symbols 0-9, India created Zero and Positional Notation
Other Systems: Roman Numerals: essentially additive, Importance of Roman Numeral lies in whether a symbol precedes or follows another

symbol. Ex. IV = 4 versus VI = 6. This was a very clumsy system for arithmetic operations.

POSITIONAL NOTATION (POSITIVE REAL INTEGERS)

Fractional numbers will not be considered but it should be noted that the addition of said would be a simple and logical addition to the theory presented.

The value of each digit is determined by its position. Note pronunciation of 256 “Two Hundred and Fifty Six?
Ex. 256 = 2*102 + 5*10' + 6*10°
Generalization to any base or radix

Base or Radix = Number of different digit which can occur in each position in the number system.

N = Anr" + Anar™ + .+ Aarl + Aor® (or simple Aur + Ao)

INTRODUCTION TO BINARY SYSTEM

The operation of most digital devices is binary by nature, either they are on or off.
Examples: Switch, Relay, Tube, Transistor, and TTL IC

Thus it is only logical for a digital computer to in base 2.

Note: Future devices may not have this characteristic, and this is one of the reasons the basics and theory are important. For they add flexibility
to the system.

In the Binary system there are only 2 states allowed; 0 and 1 (FALSE or TRUE, OFF or ON)

15| Page

Example: Most Significant Bit
4 High Order Bit

1010 = 1*23 + 0*22+ 1*21 + 0*2° = 1010
T Least Significant Bit T Denotes Base 10
Low Order Bit Usually implied by context

Bit = One Binary Digit (0 or 1)

This positional related equation also gives us a tool for converting from a given radix to base 10 - in this example Binary to Decimal.

BASE EIGHT AND BASE SIXTEEN

Early in the development of the digital computer Von Neuman realized the usefulness of operating in intermediate base systems such as base
8 (or Octal)

By grouping 3 binary digits or bits one octal digit is formed. Note that 23 =8
Binary to Octal Conversion Table

222120
000
001
010
011
100
101
110
111

L1 1 T 1 I 1 A A | I |
~No ol h WNBEFEO

Symbols (not numbers) 8 and 9 are not used in octal.
Example: 100 001 010 110

4 1 2 6g=4*8%+1%82+2*8!+6*8°=2134
This is another effective way of going from base 2 to base 10

Summary: Base 8 allows you to work in the language of the computer without dealing with large numbers of ones and zeros. This is made
possible through the simplicity of conversion from base 8 to base 2 and back again.

In microcomputers groupings of 4 bits (as opposed to 3 bits) or base 16 (24) is used. Originally pronounced Sexadecimal, base 16 was quickly
renamed Hexadecimal (this really should be base 6).

16| Page

Binary to Hex Conversion Table

23222120
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MTMUOW@>OO~NOUDMWNEREO

In Hex Symboils for 10 to 15 are borrowed from the alphabet. This shows how relative numbers really are or in other words, they truly are just
symbols.

Example: 1000 0101 0110
8 5 616 =8%162 + 5*16' + 6*16° = 2134

It is not as hard to work in base 16 as you might think, although it does take a little practice.

CONVERSION FROM BASE 10 TO A GIVEN RADIX (OR BASE)

Successive Division is best demonstrated by an example

43
| 21
| 10
| S
2
L 1+0
0 1 Most Significant Bit

Least Significant Bit

NNRNNNN
RO R R

\
\
\
\
\
\

To get the digits in the right order let them fall to the right.
For this example: 4310 = 101011> Quick Check (Octal) 101 011 =5*8 + 3=4310

17| Page

Another example: Convert 4310 from decimal to Octal

8 [43 \
8 543
0 5 Most Significant Bit
For this example: 4310 = 53 Quick Check (Octal) 5*8 + 3= 4310
GENERALIZATION OF THE PROCEDURE OR WHY IT WORKS
r |N \
r [Ns v Ao Least Significant Bit
r [N2 v AL
r | Ns VA2
As

r Nn-1 \
r [Nn v Ana

0 An Most Significant Bit

Where r = radix, N = number, A = remainder, and n = the number of digits in radix r for number N. Division is normally done in base 10.
Another way of expressing the above table is:

N =r*Ni1+ Ao
N1 =r*N2 + A1
N2 = r*Nz + A2

Nn-1 = r*Nn + An1
n = r0 +An

or (now for the slight of hand)

N =r*(r*Nz + A1)+ Ao substitute N1
N =r2Nz + rA+ Ao multiply r through equation
N =r2(r"Ns + A2) + rAx+ Ao substitute N2

N = A + Anarm + .+ Arl + Aor®

18| Page

NOMENCLATURE

Bit = 1 binary digit

Byte = 8 bits

Nibble = one half byte = 4 bits
Word = Computer Dependent

Binary Arithmetic

BINARY ADDITION

Binary addition is performed similar to decimal addition using the following binary addition rules:

0+0=0
0+1=1
1+0=1
1+1=10 (Owithacarryofl)
Examples:
Problem « 2110 + 1010 = 3110 4510 + 5410 = 9910 310+ 710 = 1010
10101> 1011012 011>
+ 010102 + 1101102 + 111>
11111» 11000112 10102
Check « 1*23 + 0*22 + 1*21 + 0*20

1*8 + 0*4 + 1*2 + 0*1 = 1010

19| Page

OcTAL ADDITION

Octal addition is also performed similar to decimal addition except that each digit has a range of 0 to 7 instead of 0 to 9.

Problem « 2110+ 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010
25s 558 33
+ 125 + 668 + 7s
378 143s 125
Check & 3*81 + 7%80 1*82 + 4*81 + 3*80 1*81 + 2*80

3*8 + 7*1 =310 64 +32+3 =990 8+2=1010

HEXADECIMAL ADDITION

Hex addition is also performed similar to decimal addition except that each digit has a range of 0 to 15 instead of 0 to 9.

Problem = 2110+ 1010 = 3110 4510 + 5410 = 9910 310+ 710 = 1010
1516 2D16 316
+ OAz1s + 3616 + 716
1Fis 6315 A (not 10)
Check < 1*16! + 15*16° 6*161 + 3*16° 10*16°
16 + 15=3110 96 + 3 =990 1010

20| Page

BINARY MULTIPLICATION

Decimal Binary
1110 10112
X 1310 x 1101>
3310 10112
00002
1o 10112
10112
14310
10001111>
Check « 8*161 + 15*16°

BINARY DIVISION

128 + 15 = 14310

Decimal Binary
2110 10101>
510 | 10510 101, | 1101001
10 101
05 110
05 101
00 101
101
000

1*16' + 5*16°
16 +5=2110

Check &«

Practice arithmetic operations by making problems up and then checking your answers by converting them back to base 10 via different bases
(i.e., 2, 8, and 16).

21| Page

How a computer performs arithmetic operations is a much more involved subject and has not been dealt with in this section.

COMPLEMENTS AND NEGATIVE NUMBERS OR ADDING A SIGN BIT

Addition, Multiplication, and Division is nice but what about subtraction and negative numbers? From grade school you have learned that
subtraction is simply the addition of a negative nhumber. Mathematicians along with engineers have exploited this principle along with modulo
arithmetic — a natural outgrowth of adders of finite width — to allow computers to operate on negative numbers without adding any new
hardware elements to the arithmetic logic unit (ALU).

SIGN MAGNITUDE
Here is a simple solution, just add a sign bit. To implement this solution in hardware you will need to create a subtractor; which means more

money.
sign magnitude

Example: -2 = 1 00102

ONES COMPLEMENT
Here is a solution that is a little more complex. Add the sign bit and invert each bit making up the magnitude — simply change the 1’s to 0’'s and

the O'sto 1’s.
sign magnitude

Example: -2 = 1 11012

To subtract in 1’s complement you simply add the sign and magnitude bits letting the last carry bit (from the sign) fall into the bit bucket, and
then add 1 to the answer. Once again let the last carry bit fall into the bit bucket. The bit bucket is possible due to the physical size of the adder.

010102 10

+ 11101 +(-2)
0 10002 8

+ 1. Adjustment
0 1001>

Although you can now use your hardware adder to subtract numbers, you now need to add 1 to the answer. This again means adding hardware.
Compounding this problem, ones complement allows two numbers to equal O (schizophrenic zero).

22|Page

Twos COMPLEMENT

Here is a solution that is a little more complex to set up, but needs no adjustments at the end of the addition. There are two ways to take the
twos complement of a number.

Method 1 = Take the 1’s complement and add 1

000102 2 « start
+ 111012 1’s complement (i.e. invert)
+ 1 add 1

111102

Method 2 = Move from right to left until a 1 is encountered then invert.

0 00102 start < 210
02 no change
102 no change but one is encountered
110, invert = change Oto 1
11102 invert = change Oto 1
11110, invert = change Oto 1

Subtraction in twos complement is the same as addition. No adjustment is needed, and twos complement has no schizophrenic zero although
it does have an additional negative number (see How It Works).

01010 10
+ 11110, +(-2)
0 10012 8

23 |Page

Examples:
Problem « 3310- 1910 = 1410 6910 - 8410 = -1510
0 1000012 0 10001012

+ 11011012 + 101011002

00011102 111100012

Check = convert to convert back to sign magnitude
intermediate base - 0001111
Ei6 = 1410 convert to intermediate base (16)
- Fi6=- 1510

WHY IT WORKS
Real adders have a finite number of bits, which leads naturally to modulo arithmetic — the bit bucket.

o
“1(7) |
-2 (6 2
() 3
M)
|

OVERFLOW

With arithmetic now reduced to going around in circles, positive numbers can add up to negative and vice-versa. Two tests provide a quick
check on whether or not an “Overflow” condition exists.

Test 1 = If the two numbers are negative and the answer is positive, an overflow has occurred.

Test 2 = If the two number are positive and the answer is negative, an overflow has occurred.

24 |Page

If computers were calculators and the world was a perfect place, we would be done. But they are not and so we continue by looking at a few real world
problems and their solutions.

CHARACTER CODES OR NON-NUMERIC INFORMATION

DeciIMAL NUMBER PROBLEM

SOLUTION

Represent a Decimal Numbers in a Binary Computer. A binary representation of a decimal number, a few years ago, might have been “hard
wired” into the arithmetic logic unit (ALU) of the computer. Today it, more likely than not, is simply representing some information that is naturally
represented in base 10, for example your student ID.

In this problem, ten different digits need to be represented. Using 4 bits 24 or 16 combinations can be created. Using 3 bits 22 or 8 combinations
can be created. Thus 4 bits will be required to represent one Decimal Digit. It should here be pointed out how 16 combinations can be created
from 4 bits (0000 - 1111) while the largest numeric value that can be represented is 15. The reason that the highest numeric value and the
number of combinations are different, is due to zero (0) being one of the combinations. This difference points up the need to always keep track
of wetter or not you are working zero or one relative and what exactly you are after — a binary number or combinations.

The most common way of representing a decimal number is named Binary Coded Decimal (BCD). Here each binary number corresponds to
its decimal equivalent, with numbers larger than 9 simply not allowed. BCD is also known as an 8-4-2-1 code since each number represents the
respective weights of the binary digits. In contrast the Excess-3 code is an unweighted code used in earlier computers. Its code assignment
comes from the corresponding BCD code plus 3. The Excess-3 code had the advantage that by complementing each digit of the binary code
representation of a decimal digit (1’s complement), the 9’s complement of that digit would be formed. The following table lists each decimal digit
and its BCD and Excess-3 code equivalent representation. | have also included the negative equivalent of each decimal digit encoded using the
Excess-3 code. For instance, the complement of 0100 (1 decimal) is 1011, which is 8 decimal. You can find more decimal codes on page 18 of
“Digital Design” by M. Morris Mano (course text).

Binary Coded Excess-3
Decimal (BCD)
Decimal Binary Decimal Binary 9’s
Digit Code Digit Code Compliment
8-4-2-1
0 0000 N/A 0000 1111
1 0001 N/A 0001 1110
2 0010 N/A 0010 1101
3 0011 0 0011 1100
4 0100 1 0100 1011

25|Page

5 0101 2 0101 1010
6 0110 3 0110 1001
7 0111 4 0111 1000
8 1000 5 1000 0111
9 1001 6 1001 0110
N/A 1010 7 1010 0101
N/A 1011 8 1011 0100
N/A 1100 9 1100 0011
N/A 1101 N/A 1101 0010
N/A 1110 N/A 1110 0001
N/A 1111 N/A 1111 0000

ALPHANUMERIC CHARACTER PROBLEM

SOLUTION

Represent Alphanumeric data (lower and upper case letters of the alphabet (a-z, A-Z), digital numbers (0-9), and special symbols (carriage
return, line feed, period, etc.).

To represent the upper and lower case letters of the alphabet, plus ten numbers, you need at least 62 (2x26+10) unique combinations.
Although a code using only six binary digits providing 26 or 64 unique combinations would work, only 2 combinations would be left for special
symbols. On the other hand a code using 7 bits provides 27 or 128 combinations, which provides more than enough room for the alphabet,
numbers, and special symbols. So who decides which binary combinations correspond to what character. Here there is no “best way.” About
thirty years ago IBM came out with a new series of computers which used 8 bits to store one character (28 = 256 combinations), and devised
the Extended Binary-Coded Decimal Interchange Code (EBCDIC pronounced ep-su-dec) for this purpose. Since IBM had a near monopoly
on the computer field, at that time, the other computer makers refused to adopt EBCDIC, and that is how the 7bit American Standard Code for
Information Interchange (ASCII) came into existence. ASCII has now been adopted by virtually all micro-computer and mini-computer
manufacturers. The table below shows a patrtial list of the ASCII code. Page 23 of the text lists all 128 codes with explanations of the control
characters.

DEC HEX CHAR DEC HEX CHAR
32 20 64 40 @

33 21 ! 65 41 A

34 22 “ 66 42 B

35 23 # 67 43 C

36 24 $ 68 44 D

37 25 % 69 45 E

38 26 & 70 46 F

39 27 ‘ 71 47 G

40 28 (72 48 H

26 |Page

41 29) 73 49 |
42 2A * 74 4A J
43 2B + 75 4B K
44 2C , 76 4C L
45 2D - 77 4D M
46 2E * 78 4E N
47 2F / 79 4F o)
48 30 0 80 50 P
49 31 1 81 51 Q
50 32 2 82 52 R
51 33 3 83 53 S
52 34 4 84 54 T
53 35 5 85 55 U
54 36 6 86 56 Vv
55 37 7 87 57 W
56 38 8 88 58 X
57 39 9 89 59 Y
58 3A : 90 5A z
59 3B : 01 58 [
60 3C < 92 5C \
61 3D = 93 5D]
62 3E > 94 5E A
63 3F ? 95 5F _

The word “string” is commonly used to describe a sequence of characters stored via their numeric codes — like ASCII).

Although ASCII requires only 7 bits, the standard in computers is to use 8 bits, where the leftmost bit is set to 0. This allows you to code
another 128 characters (including such things as Greek letters), giving you an extended character set, simply by letting the leftmost bit be a 1.
This can also lead to a computer version of the tower of Babel. Alternatively, the leftmost bit can be used for detecting errors when transmitting
characters over a telephone line. Which brings us to our next problem.

SYNTHESIS

Although ASCII solves the communication problem between English speaking computers, what about Japanese, Chinese, or Russian
computers which have different, and in all these examples, larger alphabets?

COMMUNICATION PROBLEM

Binary information may be transmitted serially (one bit at a time) through some form of communication medium such as a telephone line or a
radio wave. Any external noise introduced into the medium can change bit values from 1 to O or visa versa.

27 |Page

SOLUTION

SYNTHESIS

The simplest and most common solution to the communication problem involves adding a parity bit to the information being sent. The function
of the parity bit is to make the total number of 1’s being sent either odd (odd parity) or even (even parity). Thus, if any odd number of 1’s were

sent but an even number of 1’s received, you know an error has occurred. The table below illustrates the appropriate parity bit (odd and even)
that would be appended to a 4-bit chunk of data.

What happens if two binary digits change bit values? Can a system be devised to not only detect errors but to identify and correct the bit(s) that
have changed? One of the most common error-correcting codes was developed by R.W. Hamming. His solution, known as a Hamming code,

can be found in a very diverse set of places from a Random Access Memory (RAM) circuit to a Spacecraft telecommunications link. For more
of error correcting codes read pages 299 to 302 of the text.

Although detecting errors is nice, preventing them from occurring is even better. Which of course brings us to our next problem.

SHAFT ENCODER PROBLEM

SOLUTION

As a shaft turns, you need to convert its radial position into a binary coded digital number.

The type of coder which will be briefly described below converts a shaft position to a binary-coded digital number. A number of different types
of devices will perform this conversion; the type described is representative of the devices now in use, and it should be realized that more
complicated coders may yield additional accuracy. Also, it is generally possible to convert a physical position into an electric analog-type signal
and then convert this signal to a digital system. In general, though, more direct and accurate coders can be constructed by eliminating the

intermediate step of converting a physical position to an analog electric signal. The Figure below illustrates a coded-segment disk which is
coupled to the shaft.

Output at brushes

ool Oag
, © r:r ;

20p; 1119 0011 goA0
(a) (b)
Binary coded disk Unit distance code disk

28| Page

SYNTHESIS

The shaft encoder can be physically realized using electro-mechanical (brush) or electro-optical technology. Assuming an electro-optical
solution, the coder disk is constructed with bands divided into transparent segments (the shaded areas) and opaque segments (the unshaded
areas). A light source is put on one side of the disk, and a set of four photoelectric cells on the other side, arranged so that one cell is behind
each band of the coder disk. If a transparent segment is between the light source and a light-sensitive cell, a 1 output will result; and if an opaque
area is in front of the photoelectric cell, there will be a O output.

There is one basic difficulty with the coder illustrated: if the disk is in a position where the output number is changing from 011 to 100, or in any
position where several bits are changing value, the output signal may become ambiguous. As with any physically realized device, no matter
how carefully it is made, the coder will have erroneous outputs in several positions. If this occurs when 011 is changing to 100, several errors
are possible; the value may be read as 111 or 000, either of which is a value with considerable errors. To circumvent this difficulty, engineers
use a "Gray," or "unit distance," code to form the coder disk (see previous Figure). In this code, 2 bits never change value in successive coded
binary numbers. Using a Gray coded disk, a 6 may be read as 7, or a 4 as 5, but larger errors will not be made. The Table below shows a listing
of a 4-bit Gray code.

Decimal Gray Code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101
10 1111
11 1110
12 1010
13 1011
14 1001
15 1000

Gray code is used in a multitude of application other than shaft encoders. For example, CMOS circuits draw the most current when they are
switching. If a large number of circuits switch at the same time unwelcome phenomena such as “Ground Bounce” and “EMI Noise” can resullt.
If the transistors are switching due to some sequential phenomena (like counting), then these unwelcome visitors can be minimized by replacing
a weighted binary code by a Gray code.

29 |Page

If the inputs to a binary machine are from an encoder using a Gray code, each word must be converted to conventional binary or binary-coded
decimal bit equivalent. How can this be done? Before you can answer this question, you will need to learn about Boolean Algebra — what a
coincidence, that's the topic of the next Section.

30|Page

Mnemonics Operands Description Operation Flags | #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd. Br Add two Registers Ad + Ad + Ar ZCMNVH 1
ADC Rd. Br Add with Camry two Registers Rd+Rd+Ar+C ZCMNVH 1
ADIW RdLK Add Immedizte to Word Rdh:Rdl + Rdh:Rdl + K ZLNVE 2
SUB Rd, Rr Subtract two Registers RAd + Ad - Ar ZCHNH 1
SUBI Rd. K Subdract Constant from Register Rd«<RAd-K ZCOMNVH 1
SBC Rd, Rr Subtract with Carry two Registers RAd+ Ad-RAr-C ZCHNH 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd+ Ad-K-C ZCHNH 1
SEIW RdlLK Subiract Immediate from Ward Rdh:Rdl « Rdh:Rdl - K ZONV.E 2
AND Rd, Rr Logical AND Registers RAd + Ad = Rr ZNN 1
ANDI Rd, K | AND Register and Constant RAd + Ad = K ZNN 1
OR Rd. Rr Logical OR Registers Rd«RAdv Ar ZNY 1
ORI Rd, K Logical OR Register and Constant Ad«—Adv K ZNV 1
EOR Rd, Rr Exclusive OR Registers Rd + Ad & Ar ZNN 1
COM Rd One’s Complament Rd « 0xFF - Rd ZONV 1
NEG Rd Two's Complament Rd « 0x00 - Rd ZONVH 1
SER Rd.K St Bitis) in Registar Rd«—RdvK ZHN 1
CER Rd.K Clear Bit{s} in Register Rd + Ad « (0«FF - K} ZNV 1
INC Rd Increment Rd«<Rd+1 ZNV 1
DEC Rd Decrement Rd«<Rd-1 ZNV 1
TST Rd Test for Zero or Minus. Ad « Ad « Ad ZNN 1
CLR Rd Clear Register Ad « Rd € Rd ZNV 1
SER Rd 5=t Register Rd + OxFF MNone 1
MUL Rd. Rr Multiply Unsigned R1:R0« RAdx Ar ZC 2
MULS Rd. Rr Multiply Signed R1:R0 + Ad x Rr ZC 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:A0 + Ad x Rr ZC 2
FMUL Rd. Rr Fractional Multiply Unsigned A1:A0 « (Fdx Fr) << 1 ZC 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 + (Rd x Rr} << 1 ZC 2
ﬂULSU Rd. Rr Fractional Mul'.ielt' SiEned with U'\s_iaﬂﬂ Ri:R0 — (Rdx Ar} << 1 Z.C 2
BRANCH INSTRUCTIONS
AIMF k Relative Jump PC—PC+k +1 MNone 2
lIMP Indirect Jumgp to {Z) C+Z Mone 2
Jupt 3 Direct Jump POk MNona 3
RACALL k Relative Subroutine Call PC—PC+k+1 Nane 3
ICALL Indirect Call to (7} CeZ MNone 3
caLL K Direct Subroutine Call PCek Mons 4
RET Subroutine Raturn C « STACK Naona 4
RET Interrupt Return PC « STACK | 4
CPSE Rd.Ar Compare, Skip if Equal ifARd=RPC+—PC+2ar3 Mong 11203
CP Rd.Rr Compare Rd-Ar ZHV.CH 1
CPC Rd.Ar Compare with Carmy Rd-Ar-C Z NVCH 1
CPl Rd.K Compare Register with Immediate Z NV.CH 1
SBRC Ar.b Skip if Bit in Register Cleared PC+—PC+2or3 MNone 2
SBRS Ar. b Skip if Bit in Register is Sat JPC+«PC+20r3 MNone
SBIC F.b Skip if Bit in 'O Register Cleared PC+PC+20s3 MNong !
SBIS F.b Skip if Bit in VO Register is Set C+—PC+20r3 Mone 1203
BRBS 3.k Branch if Status Flag Set if [SREGis) = 1) then PC+PC+k + 1 Mone 12
BREC 5.k Branch if Status Flag Clearsd if (SREG(s} = 0) then PC+PC+k +1 Nana 12
BREQ k Branch if Equal fEZ=11thenPC—PC+k+1 MNone 12
BRNE k Branch if Not Equal fZ=0)thenPC+— PC+k+1 MNone 12
BRC:! k Branch if Camry Set fC=1)thenPC—PC+k+1 MNone 12
BRC:! k Branch if Camy Cleared FC=0lthenPC—PC+k+1 MNone 12
BRSH k Branch if Same or Higher fC=0)thenPC+—PC+k+1 MNone 12
BALD k Branch if Lower fC=1)then PC—PC+k+1 MNone 12
BEM k Branch if Minus fM=1lthenPC—PC+k+1 MNone 12
BRFL k Branch if Flus ifN= nPC+—PC+k+1 MNone 12
BRGE k Branch if Greater or Equal, Signed) then PC+— PC +k+1 MNone 12
BRLT k Branch if Less Than Zero, Signed fMNeV=1)then PC+—PC+k+1 MNone 12
BRHS k Branch if Half Carry Flag Sat Jhen PC+— PC+k+1 MNone 12
BRHC k Branch if Half Carry Flag Clearsd hen PC—PC+k+1 MNone 12
BATS k Branch if T Flag Set JhenPC«—PC+k +1 Nana 12
BRTC k Branch if T Flag Cleared henPC«—PC+k+1 None 112
BRVS k Branch if Overflow Flag is Set Jthen PC+— PC+k+1 MNone 12
BRVC k W Flag i Cw il]ﬂiﬂ Ei"' L PC ke w]a

1 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

31|Page

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

Mnemonics Operands Description Operation Flags #Clocks
m k Branch i Interrupt Enabled dil=Athen PC+—PC+k+1 None 12
BRID ki Br_a h if In'.erruet Cisabled if(1=0) 1he_n PC+—PC+k=+1 MNone 112
BIT AND BIT-TEST INSTRUCTIONS
SBI Pb Szt Bit in VO Ragister ID[P.h) « 1 2
CBI Ph Clear Bit in 10 Register W2(Ph) =0 2
LSL Rd Logical Shift Laft Rdin+1} + Rdin}. Ad[0} 1
LSH Rd Logical Shift Right Rdin] + Rdin+1). Ad 1
ROL Rd Rotate Left Through Carry Rd{2)+C Adin+1}— Rdi 1
ACH Rd Rotste Right Through Carry Rd(7}+C.Adinj+— Rd(n+1).C«Rd(T} 1
ASH Rd Arithmetic Shift Right Rdin) « Rdin+1). n=0.8& 1
SWAP Rd Swap Nibbles J—RAd[2..0} 1
BSET s Flag Set 1
BCLR 3 Flag Clear SREG(s) <0 1
BET Ar. b Eit Store from Register fo T T+ Airb} 1
BLD Rd. b Bit load from T to Register Rdib) « T 1
SEC Set Camry Cei c 1
CLC Clear Carry C+0 c 1
SEN Szt Nagative Flag N+ N 1
CLN Clear Negative Flag N+10 il 1
SEZ Set Zero Flag 1 i 1
CLZ Clear Zerg Flag Z+0 z 1
SEI Gilobal Interrupt Enable le=1 | 1
CLI Global Interrupt Disable |0 | 1
SES Set Signed Test Flag Sei s 1
CLs Clear Signed Test Flag S+« 0 =] 1
SEV S=1 Twoa Complament Crvarflow. Ve i v 1
CLV Clear Twos Complemsnt Cverflow V0 v 1
SET SetTin SREG T+1 T 1
CLT Clear T in SREG T+0 T 1
SEH Set Half Carry Flagin SREG HeA H 1
CLH Clear Half Carry Flag in SRE H«10 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, RBr Move Batween Registers Rd « RAr MNone 1
MOV Rd. Rr Copy Register Word Rd+1:Ad « Rr+1:Ar None 1
LD Rd. K Load immediate Rd « K None 1
LD Rd, X Load Indirsct Rd « (¥} Nene 2
LD Rd. X+ Load Rl (¥). XX+ 1 Nana 2
LD Rd. - X Load X+ X -1, Rd«{X) Naone 2
LD Rd. ¥ Load Rd « (¥} None 2
LDy Rd. ¥+ Load Rl (Y] ¥+ ¥+ 1 None 2
L Rd, - ¥ Load ¥ ¥ -1, Rd (Y] Nane 2
LoD Rd.Y+q Load Indirsct with Displacement Rd (Y +q) Naons 2
LD Rd. Z Load Indirect Rd « (7} None 2
LD Rd, Z+ Load Indir=ct and Post-| Rd + (Z}, Z + Z+1 MNane 2
LD Rd. -Z Load Indirzct and Pre-Dec. Z+Z-1,Rd« (7} Nane 2
LoO Ad., Z=q Load Indirect with Displacemeant Rde—i(Z+q) None 2
LDE Rd. k Load Direct from SAAM Rd + &) Nene 2
ST X Ar Store Indiract [X} < Rr Nana 2
=11 X+, Ar Siore Indirect and Post-Inc. Kl=Rr X< X+1 None 2
ST - ¥, Fr Store Indirect and Pre-Dec. X X-1, () «Rr None 2
ST Y, Rr Siore Indirect [¥} = Rr None 2
ST Y+, Ar Sitore Indirect and Fost-Inc. =AY <Y+1 Nane 2
ST -, Br Siore Indirect and Pre-Dec. Y Y- 1, (¥}« Rr Nane 2
STOD Y+q,Rr Siore Indirect with Displacement [Y+q)«Ar None 2
ST Z.Rr Siore Indiract [Z)+Rr MNone 2
ST Z+, RAr Siore Indirect and Post-Inc. [Z)+—RAr, Z+—Z +1 None 2
5T -Z, Rr Store Indirect and Pre-Dec. Z+Z-1,(Z)+FRr MNone 2
STD Z+gAr Store Indirect with Displacemsnt [Z+g)«<PRr None 2
5T k. Br Stora Diract to SHAM (k) Hr MNane 2
LPM Load Program Memory RO+ (2} Nene 3
LPM Rd. Z Load Program Memory Rd « (7} Nene 3
LPM Rd. Z+ Load Program Memory and Post-inc Rd+ (Z} £+ 741 None 3
SPM Sitore Program Memory [Z) + Ri:AD Nane
IN Rd. F In Port Rd«F Hone 1
ouT F. Rr Ot Port F« RAr None 1
PUSH Rr Push Register on Stack STACK « Ar Hone 2

32|Page

Mnemonics Operands Description Operation Flags #Clocks
PP Rd Pop Aegister from Stack RAd « STACK None 2
MCU CONTROL INSTRUCTIONS
NOP Mo Cperation None 1
SLEEP Slesp [see specilic descr. for Slesp function) Mane 1
WDR ‘Watchdog Reset [zee specific descr. for WDRAiImer) MNane 1
EREAK Break For Cn-chip Debuwg Only Mane MiA

Mote: 1. These instructions are only available in ATmega168PA and ATmega328P.

33|Page

