
1 | P a g e

EE 346 Microprocessor Principles and Applications

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

2 | P a g e

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

READING

The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 0: Introduction To Computing

Section 0.1: Number Systems and Appendix A “Number Systems” at the end of this document

Section 0.2: Digital Primer

Chapter 1: The AVR Microcontroller: History and Features

Section 1.1: Microcontrollers and Embedded Processors

Chapter 2: AVR Architecture and Assembly Language Programming

Section 2.5: AVR Data Format and Directives

Section 2.6: Introduction to AVR Assembly Programming

Section 2.7: Assembling An AVR Program

http://www.pearsonhighered.com/educator/product/AVR-Microcontroller-and-Embedded-Systems-Using-Assembly-and-C/9780138003319.page

3 | P a g e

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

CONTENTS

Reading .. 2

What is an Embedded System? .. 4

The Building Blocks of an Embedded System ... 5

What is an Arduino? .. 6

What is 3DoT? ... 7

What is The 3DoT Maze Kit? ... 8

What is a Program? ... 9

How is Machine Code Related to Assembly Language?... 10

Anatomy of an Assembly Instruction ... 11

Design Example ... 12

Development Steps ... 13

Help .. 14

4 | P a g e

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

WHAT IS AN EMBEDDED SYSTEM?

• An embedded system is an electronic system

that contains at least one controlling device,

i.e. “the brain”, but in such a way that it is

hidden from the end user. That is, the

controller is embedded so far in the system

that usually users don’t realize its presence.

• Embedded systems perform a dedicated

function.

What is the Controlling Device?

EE Course Technology Tools

EE201 Discrete Logic Boolean Algebra

EE301 Field Programmable Gate Array (FPGA),
Application-Specific Integrated Circuit (ASIC)

HDL (typically VHDL or Verilog)

EE346 Microcontroller Program (typically C++ or Assembly)

EE443 System on a Chip (SoC) System Level Design Language

5 | P a g e

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

THE BUILDING BLOCKS OF AN EMBEDDED SYSTEM

“This course will be an introduction to modern RISC based microcontrollers and assembly language programming.

We will use the Atmel AVR family of microcontrollers to teach hardware design of small, minimum-component

systems performing simple task-oriented activities.” Source: EE346 Syllabus

6 | P a g e

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems

WHAT IS AN ARDUINO?

• Arduino is an open-source electronics PCB containing a microcontroller and the things needed to support it: Power Supply,

Communications, Reset Button, Clock, and Connectors for adding Sensors and Actuators in the physical world.

• Using an Arduino you can develop interactive objects, taking inputs from a variety of

switches or sensors, and controlling a variety of lights, motors, and other physical outputs.

• The Arduino consists of two parts; the hardware and the software.

o Our Robot Board is based on the Arduino Leonardo which contains an ATmega32U4

8 bit microcontroller.

o We will be using AVR Studio to develop the software for the Arduino in place of the

Arduino IDE and associated Scripting Language.

7 | P a g e

WHAT IS 3DOT

3DoT (The 3D of Things) is a micro-footprint 3.5 x 7 cm all-in-one Arduino compatible microcontroller board
designed for robot projects by Humans for Robots.

• Microcontroller: ATmega32U4
• Bluetooth: FCC-certified BLE 5.0 module
• Power Management:

• RCR123A battery holder

• Included 600 mAh rechargeable battery

• Microchip MCP7383 battery charge controller
• External battery connector – for input voltages

between 4 – 18 V

• Reverse polarity protection – plug in the
battery backwards? No problem

• Motors & Servos:
• 2x JST motor connectors

• 2x standard servo connectors

• Expansion:
• 16-pin top female headers for shields – providing I/O, I²C, SPI, USART, 3.3 V and 5 V.

• Forward-facing 8-pin female header for sensor shields – providing 4 analog pins, I²C, and 3.3 V power
– for sensor shields like infrared or metal-detecting shields. Great location for headlights, lasers,
ultrasonics, etc.

• Programming switch: Three-position switch for easy programming
• No more double-tapping a button and rushing to program your board, or your robot trying to drive

away while programming. Set the switch to PRG to program, RUN to execute your code.

https://www.mouser.com/datasheet/2/268/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet-1315135.pdf
https://www.mouser.com/datasheet/2/268/20001984g-846362.pdf
https://www.arxterra.com/wp-content/uploads/2018/08/3dot-front-back-01_png_project-body.jpg

8 | P a g e

WHAT IS THE 3DOT MAZE KIT?

Designed by Humans for Robots for CSULB EE Digital Design and Project courses, the 3DoT Maze
Kit includes almost everything needed to
complete the Labs.

KIT CONTENTS

• 3DoT PaperBot Chassis

o 3DoT Board v10.1
o Bluetooth LE module

o Wood Chassis

o Drivetrain (motors, wheels,
caster)

• IR Sensor Shield

• (soldered)
• Wheel Rotary Encoder Shield

• 3x4 ft Maze (Back/White, Color

based on cost)

NOT INCLUDED
• PaperBot Template (Free Download)

• USB-B cable

• Playing Cards (Free Download)

https://www.humansforrobots.com/product/ir-sensor-shield/

9 | P a g e

WHAT IS A PROGRAM?

• The Program is a “very specific list of instructions” to the computer.

• The process of “creating the program” is where much of an electrical engineer’s time is spent.

• The program is often referred to as

Software, while the physical system

components are called Hardware. Software

held within non-volatile memory is called

Firmware.

• Software design is all about creating

patterns of 0’s and 1’s in order to get the

computer to do what we want. These 0's

and 1's are known as Machine Code.

0010 0111 0000 0000 → 1110 1111 0001 1111 → 1011 1001 0000 0111 → 1011 1001 0001 1000

1011 1001 0000 0100 → 1011 0000 0111 0110 → 1011 1000 0111 0101 → 1100 1111 1111 1101

• The architecture of the processer (or computer) within a microcontroller is unique as are the Machine Code

Instructions it understands.

0010 0111 0000 0000

1110 1111 0001 1111

• The list of Machine Code Instructions understood by a Microcontroller is known as the Machine Language.

10 | P a g e

HOW IS MACHINE CODE RELATED TO ASSEMBLY LANGUAGE?

Machine Code (The language of the machine)

• Binary Code (bit sequence) that directs the computer to carry

out (execute) a pre-defined operation.

0010 0111 0000 0000

1110 1111 0001 1111

1011 1001 0000 0111

1011 1001 0001 1000

Assembly Language

• A computer language where there is a one-to-one

correspondence between a symbolic (assembly language

instruction) and a machine code instruction.

• The language of the machine in human readable form

clr r16

ser r17

out DDRC, r16

out PORTC, r17

Corollary

• Specific to a single computer or class of computers (non-portable)

11 | P a g e

ANATOMY OF AN ASSEMBLY INSTRUCTION

Sample Code Segment

Machine Code Assembly Code

Binary Hex

0010 0111 0000 0000 0x2700 clr r16

1110 1111 0001 1111 0xEF1F ser r17

1011 1001 0000 0111 0xB907 out DDRC, r16

1011 1001 0001 1000 0xB918 out PORTC, r17

• The Operation Code or Opcode for short, is a mnemonic that tells the CPU what instruction is to be

executed. In the sample code above that would be clr (clear), ser (set register), and out (output to

I/O location). One or more operands follow the Opcode.

• The Operand(s) specify the location of the data that is to be operated on by the CPU. In many cases it is

the Arithmetic Logic Unit (ALU) that performs the specified operation.

12 | P a g e

DESIGN EXAMPLE

Write an Assembly Program to turn a light on and off with a switch. A similar program was used in
the design of The Wake-up Machine.

https://www.youtube.com/watch?v=mXLzfAHl4-k

13 | P a g e

DEVELOPMENT STEPS

14 | P a g e

HELP

0010 0111 0000 00002 = 270016 = clr r16...

An Important part of this course is understanding the Design and Language of "The Computer."

The computer implements the classical digital gate you learned in your Digital Logic class (EE201) in software with

instructions like and, or, and eor.

You are also going to have to seamlessly move from binary to hexadecimal and back again (i.e., Number Systems).

Computer programs move data through Registers, so a working knowledge of Flip-Flops and Registers is also an

important foundational part of this class.

Finally, instead of designing with gates (EE201) you will be designing with code. So you will need to review

Programming concepts like: data transfer (assignment expressions) , arithmetic and logic operators, control

transfer (branching and looping), and bit and bit test operators that you leaned in your programming class

(CECS174 or CECS100).

The good news is that help is available in Chapter 0: “Introduction to Computing” of your textbook, the

supplemental reading provided at the beginning of this document, the web, and Appendix A - Number Systems.

15 | P a g e

APPENDIX A – NUMBER SYSTEMS
Numbers and Their Computer Representation

INTRODUCTION

Base 10 result of ten fingers

Arabic symbols 0-9, India created Zero and Positional Notation

Other Systems: Roman Numerals: essentially additive, Importance of Roman Numeral lies in whether a symbol precedes or follows another

symbol. Ex. IV = 4 versus VI = 6. This was a very clumsy system for arithmetic operations.

POSITIONAL NOTATION (POSITIVE REAL INTEGERS)

Fractional numbers will not be considered but it should be noted that the addition of said would be a simple and logical addition to the theory presented.

The value of each digit is determined by its position. Note pronunciation of 256 “Two Hundred and Fifty Six?

Ex. 256 = 2*102 + 5*101 + 6*100

Generalization to any base or radix

Base or Radix = Number of different digit which can occur in each position in the number system.

N = Anrn + An-1rn-1 + … + A1r1 + A0r0 (or simple A1r + A0)

INTRODUCTION TO BINARY SYSTEM

The operation of most digital devices is binary by nature, either they are on or off.

Examples: Switch, Relay, Tube, Transistor, and TTL IC

Thus it is only logical for a digital computer to in base 2.

Note: Future devices may not have this characteristic, and this is one of the reasons the basics and theory are important. For they add flexibility

to the system.

In the Binary system there are only 2 states allowed; 0 and 1 (FALSE or TRUE, OFF or ON)

16 | P a g e

Example: Most Significant Bit

 High Order Bit

 1010 = 1*23 + 0*22 + 1*21 + 0*20 = 1010

 Least Significant Bit Denotes Base 10

 Low Order Bit Usually implied by context

Bit = One Binary Digit (0 or 1)

This positional related equation also gives us a tool for converting from a given radix to base 10 - in this example Binary to Decimal.

BASE EIGHT AND BASE SIXTEEN

Early in the development of the digital computer Von Neuman realized the usefulness of operating in intermediate base systems such as base

8 (or Octal)

By grouping 3 binary digits or bits one octal digit is formed. Note that 23 = 8

Binary to Octal Conversion Table

222120

0 0 0 = 0

0 0 1 = 1

0 1 0 = 2

0 1 1 = 3

1 0 0 = 4

1 0 1 = 5

1 1 0 = 6

1 1 1 = 7 Symbols (not numbers) 8 and 9 are not used in octal.

Example: 100 001 010 110

 4 1 2 6 8 = 4*83 + 1*82 + 2*81 + 6*80 = 2134

This is another effective way of going from base 2 to base 10

Summary: Base 8 allows you to work in the language of the computer without dealing with large numbers of ones and zeros. This is made

possible through the simplicity of conversion from base 8 to base 2 and back again.

In microcomputers groupings of 4 bits (as opposed to 3 bits) or base 16 (24) is used. Originally pronounced Sexadecimal, base 16 was quickly

renamed Hexadecimal (this really should be base 6).

17 | P a g e

Binary to Hex Conversion Table

23222120

0 0 0 0 = 0

0 0 0 1 = 1

0 0 1 0 = 2

0 0 1 1 = 3

0 1 0 0 = 4

0 1 0 1 = 5

0 1 1 0 = 6

0 1 1 1 = 7

1 0 0 0 = 8

1 0 0 1 = 9

1 0 1 0 = A

1 0 1 1 = B

1 1 0 0 = C

1 1 0 1 = D

1 1 1 0 = E

1 1 1 1 = F

In Hex Symbols for 10 to 15 are borrowed from the alphabet. This shows how relative numbers really are or in other words, they truly are just

symbols.

Example: 1000 0101 0110

 8 5 6 16 = 8*162 + 5*161 + 6*160 = 2134

It is not as hard to work in base 16 as you might think, although it does take a little practice.

CONVERSION FROM BASE 10 TO A GIVEN RADIX (OR BASE)

Successive Division is best demonstrated by an example

2 43 \

2 21 \ 1 Least Significant Bit

2 10 \ 1

2 5 \ 0

2 2 \ 1

2 1 \ 0

 0 1 Most Significant Bit

To get the digits in the right order let them fall to the right.

For this example: 4310 = 1010112 Quick Check (Octal) 101 011 = 5*8 + 3 = 4310

18 | P a g e

Another example: Convert 4310 from decimal to Octal

8 43 \

8 5 \ 3

 0 5 Most Significant Bit

For this example: 4310 = 538 Quick Check (Octal) 5*8 + 3 = 4310

GENERALIZATION OF THE PROCEDURE OR WHY IT WORKS

r N \

r N1 \ A0 Least Significant Bit

r N2 \ A1

r N3 \ A2

 A3

r Nn-1 \

r Nn \ An-1

 0 An Most Significant Bit

Where r = radix, N = number, A = remainder, and n = the number of digits in radix r for number N. Division is normally done in base 10.

Another way of expressing the above table is:

N = r*N1 + A0

N1 = r*N2 + A1

N2 = r*N3 + A2

Nn-1 = r*Nn + An-1

Nn = r*0 + An

or (now for the slight of hand)

N = r*(r*N2 + A1)+ A0 substitute N1

N = r2N2 + rA1+ A0 multiply r through equation

N = r2(r*N3 + A2) + rA1+ A0 substitute N2

N = Anrn + An-1rn-1 + … + A1r1 + A0r0

19 | P a g e

NOMENCLATURE

Bit = 1 binary digit

Byte = 8 bits

Nibble = one half byte = 4 bits

Word = Computer Dependent

Binary Arithmetic

BINARY ADDITION

Binary addition is performed similar to decimal addition using the following binary addition rules:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10 (0 with a carry of 1)

Examples:

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 101012

+ 010102

 111112

 1011012

+ 1101102

11000112

 0112

+ 1112

10102

Check 1*23 + 0*22 + 1*21 + 0*20

1*8 + 0*4 + 1*2 + 0*1 = 1010

20 | P a g e

OCTAL ADDITION

Octal addition is also performed similar to decimal addition except that each digit has a range of 0 to 7 instead of 0 to 9.

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 258

+ 128

 378

 558

+ 668

 1438

 38

+ 78

 128

Check 3*81 + 7*80

3*8 + 7*1 = 3110

1*82 + 4*81 + 3*80

64 + 32 + 3 = 9910

1*81 + 2*80

8 + 2 = 1010

HEXADECIMAL ADDITION

Hex addition is also performed similar to decimal addition except that each digit has a range of 0 to 15 instead of 0 to 9.

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 1516

+ 0A16

 1F16

 2D16

+ 3616

 6316

 316

+ 716

 A16 (not 10)

Check 1*161 + 15*160

16 + 15 = 3110

6*161 + 3*160

96 + 3 = 9910

10*160

1010

21 | P a g e

BINARY MULTIPLICATION

Decimal Binary

 1110

x 1310

 3310

 1110

 14310

 10112

x 11012

 10112

 00002

 10112

 10112

100011112

Check 8*161 + 15*160

128 + 15 = 14310

BINARY DIVISION

 Decimal

 Binary

 2110 101012

510 10510 1012 11010012

 10 101

 05

 05

 110

 101

 00 101

 101

 000

 Check 1*161 + 5*160

16 + 5 = 2110

Practice arithmetic operations by making problems up and then checking your answers by converting them back to base 10 via different bases

(i.e., 2, 8, and 16).

22 | P a g e

How a computer performs arithmetic operations is a much more involved subject and has not been dealt with in this section.

COMPLEMENTS AND NEGATIVE NUMBERS OR ADDING A SIGN BIT

Addition, Multiplication, and Division is nice but what about subtraction and negative numbers? From grade school you have learned that

subtraction is simply the addition of a negative number. Mathematicians along with engineers have exploited this principle along with modulo

arithmetic — a natural outgrowth of adders of finite width — to allow computers to operate on negative numbers without adding any new

hardware elements to the arithmetic logic unit (ALU).

SIGN MAGNITUDE
Here is a simple solution, just add a sign bit. To implement this solution in hardware you will need to create a subtractor; which means more
money.

sign magnitude

Example: - 2 = 1 00102

ONES COMPLEMENT
Here is a solution that is a little more complex. Add the sign bit and invert each bit making up the magnitude — simply change the 1’s to 0’s and
the 0’s to 1’s.

sign magnitude

Example: - 2 = 1 11012

To subtract in 1’s complement you simply add the sign and magnitude bits letting the last carry bit (from the sign) fall into the bit bucket, and

then add 1 to the answer. Once again let the last carry bit fall into the bit bucket. The bit bucket is possible due to the physical size of the adder.

0 10102 10

+ 1 11012 +(-2)

___________________ ____________

 0 10002 8

+ 12 Adjustment

 0 10012

Although you can now use your hardware adder to subtract numbers, you now need to add 1 to the answer. This again means adding hardware.

Compounding this problem, ones complement allows two numbers to equal 0 (schizophrenic zero).

23 | P a g e

TWOS COMPLEMENT

Here is a solution that is a little more complex to set up, but needs no adjustments at the end of the addition. There are two ways to take the

twos complement of a number.

Method 1 = Take the 1’s complement and add 1

0 00102 2 start

___________________ ____________

+ 1 11012 1’s complement (i.e. invert)

+ 12 add 1

 1 11102

Method 2 = Move from right to left until a 1 is encountered then invert.

0 00102 start 210

 02 no change

 102 no change but one is encountered

 1102 invert change 0 to 1

 11102 invert change 0 to 1

1 11102 invert change 0 to 1

Subtraction in twos complement is the same as addition. No adjustment is needed, and twos complement has no schizophrenic zero although

it does have an additional negative number (see How It Works).

0 10102 10

+ 1 11102 +(-2)

___________________ ____________

 0 10012 8

24 | P a g e

Examples:

Problem 3310 - 1910 = 1410 6910 - 8410 = -1510

 0 1000012

+ 1 1011012

 0 0011102

 0 10001012

+ 1 01011002

 1 11100012

Check convert to

intermediate base

E16 = 1410

convert back to sign magnitude

- 00011112

convert to intermediate base (16)

- F16 = - 1510

WHY IT WORKS

Real adders have a finite number of bits, which leads naturally to modulo arithmetic — the bit bucket.

OVERFLOW

With arithmetic now reduced to going around in circles, positive numbers can add up to negative and vice-versa. Two tests provide a quick

check on whether or not an “Overflow” condition exists.

Test 1 = If the two numbers are negative and the answer is positive, an overflow has occurred.

Test 2 = If the two number are positive and the answer is negative, an overflow has occurred.

25 | P a g e

If computers were calculators and the world was a perfect place, we would be done. But they are not and so we continue by looking at a few real world
problems and their solutions.

CHARACTER CODES OR NON-NUMERIC INFORMATION

DECIMAL NUMBER PROBLEM

Represent a Decimal Numbers in a Binary Computer. A binary representation of a decimal number, a few years ago, might have been “hard

wired” into the arithmetic logic unit (ALU) of the computer. Today it, more likely than not, is simply representing some information that is naturally

represented in base 10, for example your student ID.

SOLUTION

In this problem, ten different digits need to be represented. Using 4 bits 24 or 16 combinations can be created. Using 3 bits 23 or 8 combinations

can be created. Thus 4 bits will be required to represent one Decimal Digit. It should here be pointed out how 16 combinations can be created

from 4 bits (0000 - 1111) while the largest numeric value that can be represented is 15. The reason that the highest numeric value and the

number of combinations are different, is due to zero (0) being one of the combinations. This difference points up the need to always keep track

of wetter or not you are working zero or one relative and what exactly you are after — a binary number or combinations.

The most common way of representing a decimal number is named Binary Coded Decimal (BCD). Here each binary number corresponds to

its decimal equivalent, with numbers larger than 9 simply not allowed. BCD is also known as an 8-4-2-1 code since each number represents the

respective weights of the binary digits. In contrast the Excess-3 code is an unweighted code used in earlier computers. Its code assignment

comes from the corresponding BCD code plus 3. The Excess-3 code had the advantage that by complementing each digit of the binary code

representation of a decimal digit (1’s complement), the 9’s complement of that digit would be formed. The following table lists each decimal digit

and its BCD and Excess-3 code equivalent representation. I have also included the negative equivalent of each decimal digit encoded using the

Excess-3 code. For instance, the complement of 0100 (1 decimal) is 1011, which is 8 decimal. You can find more decimal codes on page 18 of

“Digital Design” by M. Morris Mano (course text).

Binary Coded

Decimal (BCD)

Excess-3

Decimal

Digit

Binary

Code

8-4-2-1

Decimal

Digit

Binary

Code

9’s

Compliment

0

1

2

3

4

0000

0001

0010

0011

0100

N/A

N/A

N/A

0

1

0000

0001

0010

0011

0100

1111

1110

1101

1100

1011

26 | P a g e

5

6

7

8

9

N/A

N/A

N/A

N/A

N/A

N/A

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

2

3

4

5

6

7

8

9

N/A

N/A

N/A

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

ALPHANUMERIC CHARACTER PROBLEM

Represent Alphanumeric data (lower and upper case letters of the alphabet (a-z, A-Z), digital numbers (0-9), and special symbols (carriage

return, line feed, period, etc.).

SOLUTION

To represent the upper and lower case letters of the alphabet, plus ten numbers, you need at least 62 (2x26+10) unique combinations.

Although a code using only six binary digits providing 26 or 64 unique combinations would work, only 2 combinations would be left for special

symbols. On the other hand a code using 7 bits provides 27 or 128 combinations, which provides more than enough room for the alphabet,

numbers, and special symbols. So who decides which binary combinations correspond to what character. Here there is no “best way.” About

thirty years ago IBM came out with a new series of computers which used 8 bits to store one character (28 = 256 combinations), and devised

the Extended Binary-Coded Decimal Interchange Code (EBCDIC pronounced ep-su-dec) for this purpose. Since IBM had a near monopoly

on the computer field, at that time, the other computer makers refused to adopt EBCDIC, and that is how the 7bit American Standard Code for

Information Interchange (ASCII) came into existence. ASCII has now been adopted by virtually all micro-computer and mini-computer

manufacturers. The table below shows a partial list of the ASCII code. Page 23 of the text lists all 128 codes with explanations of the control

characters.

DEC HEX CHAR DEC HEX CHAR

32

33

34

35

36

37

38

39

40

20

21

22

23

24

25

26

27

28

!

“

$

%

&

‘

(

64

65

66

67

68

69

70

71

72

40

41

42

43

44

45

46

47

48

@

A

B

C

D

E

F

G

H

27 | P a g e

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

)

*

+

,

-

*

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

The word “string” is commonly used to describe a sequence of characters stored via their numeric codes — like ASCII).

Although ASCII requires only 7 bits, the standard in computers is to use 8 bits, where the leftmost bit is set to 0. This allows you to code

another 128 characters (including such things as Greek letters), giving you an extended character set, simply by letting the leftmost bit be a 1.

This can also lead to a computer version of the tower of Babel. Alternatively, the leftmost bit can be used for detecting errors when transmitting

characters over a telephone line. Which brings us to our next problem.

SYNTHESIS

Although ASCII solves the communication problem between English speaking computers, what about Japanese, Chinese, or Russian

computers which have different, and in all these examples, larger alphabets?

COMMUNICATION PROBLEM

Binary information may be transmitted serially (one bit at a time) through some form of communication medium such as a telephone line or a

radio wave. Any external noise introduced into the medium can change bit values from 1 to 0 or visa versa.

28 | P a g e

SOLUTION

The simplest and most common solution to the communication problem involves adding a parity bit to the information being sent. The function

of the parity bit is to make the total number of 1’s being sent either odd (odd parity) or even (even parity). Thus, if any odd number of 1’s were

sent but an even number of 1’s received, you know an error has occurred. The table below illustrates the appropriate parity bit (odd and even)

that would be appended to a 4-bit chunk of data.

SYNTHESIS

What happens if two binary digits change bit values? Can a system be devised to not only detect errors but to identify and correct the bit(s) that

have changed? One of the most common error-correcting codes was developed by R.W. Hamming. His solution, known as a Hamming code,

can be found in a very diverse set of places from a Random Access Memory (RAM) circuit to a Spacecraft telecommunications link. For more

of error correcting codes read pages 299 to 302 of the text.

Although detecting errors is nice, preventing them from occurring is even better. Which of course brings us to our next problem.

SHAFT ENCODER PROBLEM

As a shaft turns, you need to convert its radial position into a binary coded digital number.

SOLUTION
The type of coder which will be briefly described below converts a shaft position to a binary-coded digital number. A number of different types
of devices will perform this conversion; the type described is representative of the devices now in use, and it should be realized that more
complicated coders may yield additional accuracy. Also, it is generally possible to convert a physical position into an electric analog-type signal
and then convert this signal to a digital system. In general, though, more direct and accurate coders can be constructed by eliminating the
intermediate step of converting a physical position to an analog electric signal. The Figure below illustrates a coded-segment disk which is
coupled to the shaft.

29 | P a g e

The shaft encoder can be physically realized using electro-mechanical (brush) or electro-optical technology. Assuming an electro-optical

solution, the coder disk is constructed with bands divided into transparent segments (the shaded areas) and opaque segments (the unshaded

areas). A light source is put on one side of the disk, and a set of four photoelectric cells on the other side, arranged so that one cell is behind

each band of the coder disk. If a transparent segment is between the light source and a light-sensitive cell, a 1 output will result; and if an opaque

area is in front of the photoelectric cell, there will be a O output.

There is one basic difficulty with the coder illustrated: if the disk is in a position where the output number is changing from 011 to 100, or in any

position where several bits are changing value, the output signal may become ambiguous. As with any physically realized device, no matter

how carefully it is made, the coder will have erroneous outputs in several positions. If this occurs when 011 is changing to 100, several errors

are possible; the value may be read as 111 or 000, either of which is a value with considerable errors. To circumvent this difficulty, engineers

use a "Gray," or "unit distance," code to form the coder disk (see previous Figure). In this code, 2 bits never change value in successive coded

binary numbers. Using a Gray coded disk, a 6 may be read as 7, or a 4 as 5, but larger errors will not be made. The Table below shows a listing

of a 4-bit Gray code.

Decimal Gray Code

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

SYNTHESIS

Gray code is used in a multitude of application other than shaft encoders. For example, CMOS circuits draw the most current when they are

switching. If a large number of circuits switch at the same time unwelcome phenomena such as “Ground Bounce” and “EMI Noise” can result.

If the transistors are switching due to some sequential phenomena (like counting), then these unwelcome visitors can be minimized by replacing

a weighted binary code by a Gray code.

30 | P a g e

If the inputs to a binary machine are from an encoder using a Gray code, each word must be converted to conventional binary or binary-coded

decimal bit equivalent. How can this be done? Before you can answer this question, you will need to learn about Boolean Algebra — what a

coincidence, that’s the topic of the next Section.

31 | P a g e

APPENDIX B – ATMEGA INSTRUCTION SET1

1 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

32 | P a g e

33 | P a g e

