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ABSTRACT: I determined the phase boundaries for regularly branched block copolymers in the self-
consistent classical path, circular/spherical unit cell approximation. In contrast to the case for linear
chains, end-free “dead” zones are highly suppressed for highly branched molecules, greatly simplifying
the integral equations to be solved. For the linear/branched diblock copolymers considered here, the phase
boundaries between microphases are considerably shifted toward small volume fractions of the branched
species. The equilibrium distribution of chain free ends is asymptotically uniform at high degrees of
branching, consistent with the “filled core” picture of single dendrimer conformations.

1. Introduction

Hyperbranched molecules pose intriguing possibilities
for control of interfacial properties,1 especially as control
over their synthesis and architecture has become
breathtaking.2-5 The dendrimer can have limbs of
differing compositions or arms whose composition is a
function of distance from the molecule center. The
proliferation of chain tips, each of which can be deco-
rated with an important functionality, is especially
attractive for a range of practical applications. These
molecules have the potentiality for complex single-
molecule structure formation and, hence, specificity of
biological interactions. Even in the absence of intra-
chain specific interactions, the dendritic arms are
susceptible to demixing solely on the basis of their
packing interactions.6

The application of interest here is controlling the
microdomain morphology of linear-dendritic block co-
polymer melts. Ordinary multiblock copolymers are
composed of long runs of same-type monomers (blocks)
placed on a linear chain. The simplest such molecules
forming interesting microdomains are the diblock co-
polymers,7 where there are essentially two homopoly-
mers (the first of type A monomers and the second of
type B monomers) joined end-to end. At low tempera-
ture, demixing of A and B monomers occurs locally, but
not globally, as a result of the irreversible chemical link
between the blocks. As a function of the average
composition of the chain and temperature, several
microdomain textures appear spontaneously in thermal
equilibrium. In the strongly segregated regime (low
temperature, sharp interfaces between A- and B-rich
domains), the microphases that appear are spherical
domains either close packed or on a bcc lattice, passing
to cylinders packed on a hexagonal lattice and then to
lamellar domains where the A and B domains form
alternating planes or material. These “classical” phases
are the only possibilities in the asymptotic low-temper-
ature limit, characterized by øN f ∞, where N is the
overall molecular weight of the copolymer, and ø is the
Flory-Huggins interaction parameter between A and
B monomers. For moderate øN, there are exotic gyroid
and bicontinuous phases.8

Through a variety of mechanisms, this strong-
segregation-limit phase diagram can be moderately
shifted9 and warped to suit some desired properties. By

choosing the monomers to displace different volumes,
or by making one block considerably stiffer than the
other, the phase boundaries between the classical
phases can be shifted. It has been suggested10,11 that
choosing one block to have a hyperbranched architecture
allows major, sweeping shifts in the diblock phase
diagram. Roughly speaking, even for a symmetric
overall composition, the regular branchings of the B
block (e.g.) will favor interfacial curvature forcing the
B chains to splay outward, relieving some packing
constraints. There has been predicted the interesting
possibility that the diagrams can be shifted toward
keeping an extreme minority branched species on the
exterior of the domains.11 As photonic band-gap devices
are predicted for materials with sufficient index mis-
match packed on a bcc lattice where the interstitial
domains occupy a small volume fraction,12,13 these
dendritic molecules could find wide application.

These classical phases, “spherical”, “cylindrical”, and
“lamellar” have close analogies to single-molecule den-
drimer conformations. For example, spherical domains
are structurally very similar to single dendrimer mol-
ecules, where several branches come together in a small
region, and the dendritic arms splay outward. Cylindri-
cal domains are quite similar to dendrimer comb
molecules,14,15 where hyperbranched chains are periodi-
cally grafted to a flexible backbone. The lamellar phase
is likewise similar to the end-grafted “brush” layer.16,17

What I look at here builds upon each of these pictures,
allowing the size, and packing of flexible/dendrimer
copolymers to adjust itself in thermodynamic equilib-
rium.

The theoretical approach that has been taken previ-
ously,11 is the simplest one possible for strongly segre-
gated systems, the famous Alexander-de Gennes ap-
proximation.18,19 Here, all chain free ends are assumed
to be localized along a single surface. Squelching the
internal degrees of freedom of the chains greatly simpli-
fies the theoretical development of block copolymer
thermodynamics. This approximation maintains all the
correct scaling laws for the single-chain free energy, and
the microdomain length scales in the strongly segre-
gated regime at a cost of overestimating the chain free
energy by only about 20%, at least for linear diblocks.
As applied to the conformation of single dendrimer
molecules, this approximation, however, is essentially

10.1021/ma011532i CCC: $22.00 © xxxx American Chemical Society
PAGE EST: 8.3Published on Web 00/00/0000



the statement that all the dendritic tips are partitioned
to the surface creating a “hollow-core” dendrimer.20 As
has been fairly well established, first in simulations21,22

and other theoretical developments23 and now more and
more experimentally,24 the tips of the dendritic molecule
are strongly distributed throughout the conformation
of the molecule (“filled core”). Thus, I can expect that
the Alexander picture might be systematically trouble-
some for dendritic molecules, and I step past this
approximation in the present note. Additionally, while
my interest here is focused on strongly segregated
copolymers, the single-chain scattering function for
hyperbranched polymers derived in ref 23 could be used
to calculate how ordering in the weakly segregated limit
is affected by branching.

Indeed, a systematic improvement upon the Alex-
ander picture has been available for diblocks for quite
some time. The essential approximation involved is
again a quashing of some of the chain degrees of
freedom, in this case the suppression of all fluctuations
around those chain conformations strictly minimizing
the single-chain free energy.25,26 This so-called “classical
path” approximation correctly predicts a parabolic pres-
sure for lamellar domains, as well as a parabolic
composition profile for densely grafted linear homopoly-
mers in good solvent. This parabolic pressure and profile
incredibly survive when the end-grafted brush is com-
posed of regularly branched dendrimers,17 and I can
expect that this parabolic behavior survives in copoly-
mer domains, as indeed we see below. An interesting
result of the tendency of dendrimers to distribute their
free ends throughout space is that the existence of
“dead” zones25,27 (end-free zones required in linear
brushes grafted to convex domains to avoid overfilling
space) can be in general avoided. While dendrimer
domains are inherently more complicated that their
diblock copolymer analogues, the absence of the dead
zone greatly simplifies their analysis.

The paper is organized as follows. I initially describe
the classical path calculation and then the formalism
of the numerical Scheutjens and Fleer28 lattice calcula-
tions that will be compared to the classical path. Then,
the phase diagrams for the linear/branched copolymer
will be developed, and the comparison to that generated
by the Alexander and the lattice numerical self-
consistent field will be determined. Discussing the
absence of the dead zones, and the remarkable inability
of the Alexander model to correctly model these systems
will be discussed, and then the conclusions will be
offered.

2. Classical Path Model
The polymers in question have an A block consisting

of a single, linear strand of NA monomers, joined to a B
block consisting of a regularly branched dendritic
polymer of G generations, with monodisperse flexible
spacers of molecular weight NB, as in Figure 1. Thus,
the G1 species is an ordinary diblock copolymer, with
total molecular weight NA + NB, and the volume fraction
of B monomers, φ, satisfys

In general, the total molecular weight of the chain is

and the fraction of B monomers is given by

In the strong segregation limit, the phase boundaries
between the lamellar, cylindrical, and spherical “clas-
sical” phases should be entirely a function of φ. The
location of these phase boundaries, of course, will
depend on the overall generation G of the B block. As
in ref 11, I expect these phase boundaries to be shifted
significantly toward keeping the branched block on the
exterior of the curved microdomains. To determine these
phase boundaries, I need to compare Flam(φ, G) to Fcyl-
(φ, G) to Fsph(φ, G). In each case, the morphology with
the lowest free energy per chain is the equilibrium
phase.

Let us begin with the calculation for Flam(φ, G). While
the overall fraction of B monomers is fixed by the
chemistry of the chain, eq 3, the overall width of the
lamellar pattern is not. Let h ) hA + hB be the total
width of a single lamellar half-layer (so that the bulk
pattern has a total repeat spacing of 2h). Let σ be the
number of chains per unit area at the A-B interface.
The fact that I consider meltlike conditions imposes two
relationships between σ, φ, h, hA, and hB:

so that hA and hB can be written in terms of σ and φ:

where a3 is the volume a single monomer takes up in
the melt (assumed to be the same for both A and B
monomers).

To calculate Flam(φ, G), I can independently calculate
the free energy per A block, FA, the free energy per B
block, FB, and the interfacial energy per chain, Fsurf.
Here, the A block forms a linear polymer brush, and its
free energy has been calculated many times:25,26

φ ) NB/(NA + NB) (1)

N ) NA + NB(2G - 1) (2)

Figure 1. Schematic. Here, a G4 B block is grafted to a
flexible A block. The ordering possibilities are (A) lamellar,
(B) cylindrical, and (C) spherical. (D) Tip-graft AB copolymer,
for which the Alexander-de Gennes model is essentially exact.

φ )
NB(2G - 1)

NA + NB(2G - 1)
(3)

φ ) hB/h (4)

a3N ) h/σ (5)

hA ) (1 - φ)Na3σ (6)

hB ) φNa3σ (7)
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Also, if the surface energy between A and B monomers
is γ, then the surface energy per chain is simply

All that remains is to calculate the free energy per
branched block, a nontrivial task.

Let us start with an appropriate free-energy func-
tional that can be used to determine both the configu-
ration of these branched chains and FB:

Here, z(zo, n) is the primitive trajectory of the dendrimer
block,17 all of whose free ends are held at z ) zo and
whose single trunk chain is attached to the z ) 0 plane
where the A and B domains meet. The function f (n)
counts the number of statistically equivalent chain
segments as a function of chemical index. Near the free
ends (0 < n < NB in eq 10), there are 2G-1 equivalent
chain segments. As shown schematically in Figure 1 for
a G4 diblock

The fact that each statistically identical chain segment
follows exactly the same trajectory is true only in the
classical limit, that is when Gaussian fluctuations of the
chain trajectories around those minimizing FB[z(zo, n)]
are negligible.17

The free energy functional in eq 10 essentially states
that each of the f (n) equivalent strands have to be
stretched a certain amount dz, and each of them needs
to be inserted into the layer at the height z(zo, n) at the
cost of P(z) per monomer. When the B-block is an
unbranched G1, then it is well-known that the potential
P(z) is uniquely determined by the monodispersity of
the chains. In the language of classical mechanics, a
particle dropped the height zo from rest hits the “ground”
in a “time” NB regardless of the initial position of the
particle, zo. The required potential has a parabolic form:

The required equal-time potential is harmonic. Since
the total transit time of the classical particle is known
to be one-quarter of the full oscillation period of this
equivalent oscillator, I must have26

When the chain is regularly branched, with statistically
identical segments, I can retain the form for the inser-

tion potential per monomer as in eq 14, but with a
different expression for Po and ωG.17 Minimizing eq 10
with respect to variations in z(zo, n) yields the Euler-
Lagrange equation of motion:

With the ansatz, shown in eq 14, and the definition of
Po given in eq 15, this becomes:

When the chemical index is not an integral multiple of
NB, the factor f (n) is a constant, and the equation of
motion during these times is

Thus, the trajectory must be a continuous piecewise
harmonic function. When the chemical index is an
integral multiple of NB, the weighting function f (n) is
cut discontinuously in half. Integrating the equation of
motion from just below this discontinuity to just above
it yields a boundary condition pasting together the
harmonic pieces of the overall trajectory:

Thus, the velocity along the chain doubles at the
junction points to make up for the fact that half of the
chains entering the junction terminate there.

If I label the G harmonic pieces of the trajectory so
that

then I can write each of the harmonic pieces of trajectory
as

The initial conditions on the trajectory (z(zo, 0) ) zo, and
dz/dn|n)0 ) 0) thus determine the constants A1 and B1:

Continuity of the trajectory is ensured by zg(gNB) )
zg+1(gNB) or

The condition of mechanical equilibrium at the junction
points, eq 19, is enforced when

FA ) π2

8
hA

2

NA
) π2

8
(1 - φ)σ2N (8)

Fsurf ) γ
σ

(9)

FB[z(zo, n)] ) ∫0

GNB f(n)[ 1
2a2|dz

dn|2 + P(z(zo, n))] (10)

f (n) ) 2G-1 when 0 e n < NB (11)

f (n) ) 2G-2 when NB e n < 2NB (12)

l

f(n) ) 1 when (G - 1)NB e n e GNB (13)

P(z) ) Po(h
2 - z2) (14)

Po ≡ ωo
2

2a2NB
2

f ωo ) π
2

(15)

d
dn(f (n)

a2
dz
dn) ) f (n) d

dz
P(z) (16)

d
dn(f (n)

a2
dz
dn) ) - f (n)

ωG
2

a2NB
2
z(zo, n) (17)

d2

dn2
z(zo, n) ) -

ωG
2

NB
2
z(zo, n) (18)

2dz
dn

|gNB
- + dz

dn
|gNB

+ for each g ) 1 ... g ) G (19)

z(zo, n) ) zoz1(n) for 0 e n < NB (20)

z(zo, n) ) zoz2(n) for 0 e n < 2NB (21)

l

z(zo, n) ) zozG(n) for (G - 1)NB e n e 2GNB (22)

zg ) Ag cos
nωG

NB
+ Bg sin

nωG

NB
(23)

A1 ) 1 and B1 ) 0 (24)

Ag cos ωGg + Bg sin ωGg ) Ag+1 cos ωGg +
Bg+1 sin ωGg (25)
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This set of 2G equations can be easily solved numeri-
cally. To determine the solution completely requires the
determination of ωG, by requiring that

that is, that the trajectory arrives at the A/B junction
plane using up exactly the correct number of B mono-
mers. Equation 27 is generally a G - 1 polynomial in
cos ωG. There are undoubtedly multiple roots of this
equation. The appropriate root to take, however, is the
one for which the entire trajectory takes place for z > 0.
This condition is enough to uniquely determine ωG, and
in Table 1, I show the values of ωG that are used in this
paper. Furthermore, Figure 2 shows the piecewise
harmonic trajectories for several generations.

With the trajectories thus determined, the free energy
per B block can be determined subject to the constraint
that the dendrimer block has all of its free ends located
at zo, simply by using the known trajectory in eq 10.
Since each of the Ag, Bg ∼ zo, the following scaling holds:

or after some rearranging

where Tg is given by

Clearly, when G ) 1, so that ωG ) π/2 and A1 ) 1, B1 )
0, the free energy per B block is independent of zo. This
feature is lost for all other G * 1. Therefore, to calculate
the average value of FB(zo), I must determine the
distribution of chain ends. The number of dendrimer
chains with free ends in the region (z, z + dz) is given
by ê(z) dz, and ê(z) must be calculated. Once this is
accomplished, the branched free energy per chain is
given by

where the dimensionless B-chain free energy has been
defined as fB(G). With eqs 8 and 9, eq 31 gives the free
energy per chain for the lamellar phase, Flam.

Determining ê(z) must proceed essentially numeri-
cally, although the general approach is the same as for
the G1 lamellar domains. Given that the free ends of

the branched chain are held at zo, the volume fraction
at the height z1 taken up by monomers on this chain is
given by

where it is understood that n(zo, z) is the chemical index
such that the trajectory calculated in eq 23 satisfies

The factor of f (n(zo, z)) in the numerator counts the fact
that there are multiple, identical chain segments con-
tributing to the partial volume fraction. For G1 copoly-
mers, there is an analytic expression for n(zo, z1), but
in general this is strictly a numerical procedure. One
must arrange ê(zo) so that the B domain is completely
filled with B monomers:

Thus, ê(zo) is normalized so that σ chains per unit
grafting area are found in the layer. Equation 34 states
that free ends can be distributed from the top of the
grafted layer inward, at each height zo by placing just
enough chains to take up whatever empty space remains
there. As long as φ(z, zo) is a monotonically increasing

2(-Ag sin ωGg + Bg cos ωGg) ) (-Ag+1 sin ωGg +
Bg+1 cos ωGg) (26)

zG(zo, GNB) ) 0 (27)

F(zo) )
zo

2 ωG
2

2NB
∑

g
∫g-1

g
dm (-Ag sin ωGm +

Bg cos ωGm)2f (mNB) -
zo

2 ωG
2

2NB
∑

g
∫g-1

g
dm

(Ag cos ωGm + Bg sin ωGm)2 f (mNB) +

zo
2 ωG

2

2NB
∫0

G
dm f (nNB) (28)

F(zo) )
hB

2 ωG
2

2NB
∑

g

f (gNB)(1 +
zo

2

2hB
2ωG

Tg) (29)

Tg ) 2AgBg(cos 2gωG - cos 2(g - 1)ωG) +

(Ag
2 - Bg

2)(sin 2(g - 1)ωG - sin 2gωG) (30)

FB ) ∫0

hB dzo FB(zo)ê(zo) ≡ h2

N
fB(G) (31)

Figure 2. Classical path trajectories. Here, are shown the
scaled trajectories for G1-G10, z(zo, n)/zo. The trajectories
flatten considerably at high G and at small n, indicating that
most of the monomers on the chain reside near the free end.
The ansatz in eq 60 corresponds to z(zo, n)/zo ) 1.

Table 1. Classical Path Dimensionless Frequency, ωG,
and Ratio of Alexander to Classical Energies for a Flat

Brush

G cos2 ωG GωG FAlexander/Fclassical

1 0 1.570 796 326 1.215
2 2/3 1.230 959 417 2.639
3 8/9 1.019 510 728 5.527
4 1/9(5 + x13) 0.843 642 816 11.68
5

2/3(1 + x2/3)
0. 692 568 421 24.57

6 0.991 223 044 0.562 929 619 51.06
7 0.995 820 956 0.452 834 431 104.8
8 0.997 969 692 0.360 593 573 213.4
9 0.999 001 701 0.284 410 097 432.7

10 0.999 505 639 0.222 360 504 868.4

φ(z1, zo) )
f (n(zo, z))

dz/dn(zo, n(zo, z1))
(32)

z(zo, n(zo, z1)) ) z1 (33)

σ ) ∫z

h
dz0ê(zo)φ(zo, z) (34)
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function of z, this can be accomplished with a unique
nonnegative ê(zo).

With ê(zo) determined, the entire free energy per
chain can be written as

or equivalently

The unknown parameter is σ, which takes its equilib-
rium value when dFtot/dσ ) 0:

The equilibrium free energy per chain in the lamellar
phase is therefore

Again, it must be stressed that fB must be determined
numerically in the event that G * 1. The fact that the
free energy scales as γ2/3N1/3 is preserved from the G1
diblocks, but in general the “prefactor” is a simple
function of volume fraction, φ, and a rather complicated
function of generation number G. As in the discussion
below, this scaling with N and γ is preserved in the
Alexander-de Gennes formulation of the dendrimer
copolymer free energy. However, insisting that all free
ends of the branched chains exist at the extreme tips of
the B domains results in a spectacular overestimation
of the chain free energy, especially at large G. Even still,
the classical treatment and the Alexander-de Gennes
treatment give remarkably similar phase diagrams.

To calculate the free energies of the cylindrical and
spherical phases, only minor changes are needed. The
relationship between volume fraction and hA, hB de-
pends on dimension:

Evidently, hA and hB can be written in terms of σ, φ,
and N as

and

Additionally, the free ends must be distributed accord-
ing to a different law than that given in eq 34. For
cylinders, I must have

For spherical domains, the relation is

After calculating ê(zo) by inverting these integral rela-
tions numerically, I must check explicitly that ê(zo) is
strictly positive; that is, it has no “dead zones” or
unphysical requirements that negative ends have to be
distributed. With linear chains, it is well-known that
such dead zones exist for any convexly curved sub-
strate.25,27 What is surprising (but is really only a
straightforward consequence of the fact that dendrimers
carry almost all of their molecular weight at their “tips”
as in Figure 2) is that these dead zones are completely
suppressed at a G-dependent curvature. In what follows
below, I am careful to remark when this is violated. The
suppression of the dead zone is essentially a conse-
quence of the “filled core” property of single dendrimer
molecules.21-24

3. Lattice SCF Model
To explicitly check the predictions of the classical path

analysis, numerical self-consistent field methods must
be employed,8,29 and I choose to do so with the lattice
self-consistent field method of Scheutjens and Fleer.28

As above, there are NA A-type monomers grafted to a
dendrimer of type B monomers. The dendritic block of
the copolymer consists of G generations, each arm
consisting of NB monomers. The total molecular weight
of the copolymer is N, and there are G generations on
the B block. Space is entirely filled in this lattice
calculation with a combination of A and B monomers
(each taking up an equal volume consisting of a single
lattice site). Thus, I am examining the incompressible
melt state of the neat copolymer liquid.

Given, Pi(z), the free energy cost per i type monomer
for insertion at the position z in the lattice, the statistics
of a single dendrimer can be determined. First, I define
the Boltzmann weight associated with Pi

where the energy scale is explicitly taken to be the
thermal scale, kT ≡ 1. Let G 1

i (z) be the total statistical
weight associated with a linear chain of Ni type-i
monomers with one end located at z, in the given
potential field Pi(z). This weight can be built up through
the recursion relations:

where Gi(z, z′;1, n) is the statistical “propagator”, or
unnormalized statistical weight, of a linear chain seg-
ment of n monomers of type i proceeding from z to z′.
Here, the angled brackets indicate a sum over nearest-
neighbor lattice sites

Ftot ) FA + FB + Fsurf (35)

Ftot ) σ2N(π28(1 - φ) + φfB(G)) + γσ (36)

σeq ) ( 2γ
π2

8
(1 - φ) + φfB(G))1/3

(37)

Flam ) γ2/3N1/3 3
22/3(π2

8
(1 - φ) + φfB(G))1/3

(38)

1 - φ ) |hA

h
|2 for cylinders (39)

1 - φ ) |hA

h
|3 for spheres (40)

hA ) 2(1 - φ)Na3σ (41)

hB ) 2(x1 - φ - 1 + φ)Na3σ for cylinders
(42)

hA ) 3(1 - φ)Na3σ (43)

hB ) 3((1 - φ)2/3 - 1 + φ)Na3σ for spheres (44)

(hA + r)σ ) ∫r

hB dro ê(ro)(hA + ro)φ(ro, r) (45)

(hA + r)2σ ) ∫r

hBdro ê(ro)(hA + ro)
2
φ(ro, r) (46)

gi(z) ) exp[-Pi(z)] (47)

Gi(z, z′;1, 1) ) gi(z)δz,z′

Gi(z, z′;1, n) ) 〈Gi(z, z′; 1, n - 1)〉gi(z)

G 1
i (z) ) ∑

z′
Gi(z, z′;1, Ni) (48)

〈gi(z)〉 ) λ1(z)gi(z - 1) + λ0(z)gi(z) + λ2(z)gi(z + 1)
(49)
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for example, where λ1 ) λ2 ) 1/6 and λ0 ) 2/3 accounts
for the fraction of nearest neighbor sites (on a simple
cubic lattice with a total of six nearest neighbors). With
the statistical weight G 1

i (z), the full statistical weight
attributed to the dendrimer copolymer can be deter-
mined. I define

That is, G 2
i (z) is the total weight associated with a

strand of Ni monomers of type i beginning at z, proceed-
ing to any z′ where it is met by two strands of length
Ni. Clearly, the entire weight associated with this
copolymer is

Thus, the Boltzman-weighted statistical sum for a single
copolymer is made up of the weight of the A-strand
meeting a G-generation B dendrimer at the position z
in the lattice, summed over all positions in the lattice.

Given all of the G M
i (z), all relevant statistical aver-

ages can be made. In particular, the volume fraction due
to the sth monomer on one of the two of the principle
branches of the dendrimer block can be calculated as

where the additional factor of g(z) in the denominator
cancels out the double weighting of the s monomer taken
by the two factors of GB in the numerator. Thus, given
PA(z) and PB(z), all of the statistics of the copolymer
domain can be calculated. In particular

can be calculated. Self-consistency is enforced on Pi(z)
when φtot(z) ) 1, and

Here, R(z) is a “hard-core” potential, which must be
chosen the same for A and B type monomers, and ø is
the Flory-Huggins interaction parameter between A
and B type monomers. The incompressibility constraint
and self-consistency represents 2L highly nonlinear
equations in the 2L unknown values of PA(z), PB(z)
where L is the total size of the lattice. The required
values of the potentials are determined through stan-
dard numerical methods.28,30 When self-consistent val-
ues of the potentials have been determined, the free
energy of the resulting conformation can be calculated
as

Here, øij ) øδij is the Flory-Huggins interaction pa-
rameter between monomer type i and monomer type j.

Thus, in various geometries, the free energies of the
lamellar, cylindrical, and spherical phases can be de-
termined.

The calculations have been carried out on a two-
dimensional lattice, so that three-dimensional struc-
tures with one degree of translational invariance have
been modeled. Thus, the calculations are restricted to
determining the phase boundaries between the lamellar
and cylindrical domains, but the Wigner-Seitz cell
containing a single cylindrical domain is not circular in
cross section. The packing of the cylinders on a hexago-
nal lattice relaxes this necessary approximation of the
classical path analysis.

4. Results

In Figure 3, I have the phase diagram, in the strongly
segregated regime, of these flexible-hyperbranched co-
polymers. The classical path calculations have been
executed for G1-G10, and the lamellar (L), cylindrical
(C), and spherical (S) phases have been compared. The
solid lines indicate phase boundaries as calculated with
the classical path. The lamellar phase is dramatically
shifted toward low φ (that is, even a small amount of B
on the chain is enough to stabilize the lamellar phase).
The most dramatic shift occurs for the lamellar-
cylinder transition in which the dendrimer occupies the
interior of the cylindrical domains (the ] symbols in
Figure 3). Interestingly, the spherical phases are pushed
entirely off the phase diagram and either stay there
(dendrimer interior to the spherical domains), or enter
the phase diagram only at relatively high generation
number (G4). This hardly matches the known strongly
segregated behavior of the G1 copolymers (ordinary
diblock copolymers), and is a symptom of the presence

G M
i (z) ) ∑

z′
Gi(z, z′;1, Ni)〈G M-1

i (z′)〉 (50)

weight ) ∑
z

G 1
A(z)〈G G

B(z)〉 (51)

φs(z) ) ∑
zo,z1,z2

[G 1
A(zo)〈G

B(zo, z1;1, N)〉 ×

〈G G-1
B (z1)〉G

B(z1, z;1, s)GB(z, z2;s, N)〈G G-2
B (z2)〉

2]/
[weight(zo)g(z)] (52)

φtot(z) ) φA(z) + φB(z) (53)

PA(z) ) R(z) + ø〈φB(z)〉 (54)

PB(z) ) R(z) + ø〈φA(z)〉 (55)

F ) ∑
z

log(weight(z)) +
1

2
∑
ij

øijφi(z)〈φj(z)〉 (56)

Figure 3. Phase diagram, classical path approximation. The
phases are as marked on the diagram. In all cases, the phase
boundaries are considerably shifted toward keeping the hy-
perbranched B block on the convex side of the AB interface.
Also, up to G5, the phase boundary for lamellar-cylindrical
transitions for ø ) 0.5, and the total number of B monomers
on the chain equal to 64 (φ being determined by the total
number of A and B monomers on each chain). Thus, øN ranges
from 24 up to 96 for the most extreme asymmetries considered.
These values of øN ensure that the calculations are uniformly
situated in the strongly segregated regime. The shaded region
is the region for which negative end-densities are required by
the parabolic potential. Thus, the calculation in this region
cannot be trusted. Dashed lines are the result of a two-
dimensional lattice SCF calculation showing the transition line
between the cylindrical and lamellar phases.
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of “dead” zones in the calculations for G < 4 and of the
spherical unit cell approximation that has been used to
calculate the classical path free energy.

The boundaries at low φ have the dendritic arms
inside the cylindrical domains, and the flexible A blocks
are on the exterior of the domains. The exterior A blocks
must exhibit dead zones. In all cases, I have assumed
that these A blocks, when confined to the exterior of the
domains, are modeled satisfactorily by the Alexander-
de Gennes picture. For linear chains, this introduces a
free energy cost that is larger by a factor of ap-
proximately 1.2 than necessary (for flat domains) and
is much more satisfactory than the huge overestimate
made at higher values of G (see discussion, below, and
Table 1).

The shaded region in Figure 3 indicates those regions
in which the density of ends, ê(zo) as calculated via eqs
45 and 46, becomes negative. This signals a breakdown
in the parabolic ansatz for the monomer insertion
potential, eq 14. A new self-consistent potential can be
calculated, and a reliable estimate for the classical-path
with dead zone free energy can be made, but this goes
past the scope of the present development.27

The spherical/cylindrical unit cell approximation can
be addressed with the lattice SCF model. Here, the
calculations have been executed in two spatial dimen-
sions, so that lamellae and cylinders can be faithfully
represented. Spherical domains require a full calcula-
tion in three dimensions, at present too expensive for a
site-by-site calculation on a three-dimensional simple
cubic lattice, although such calculations have met
success in a dual space of orthogonal functions of the
required symmetry.8 In any case, the dashed lines show
the calculated phase boundaries between lamellar and
hexagonally packed cylindrical domains for a variety of
dendrimer-flexible copolymers. For all of these calcula-
tions, ø ) 0.5, and the number of B monomers on the
chain has been set to 64. The number of A monomers
has been adjusted to attain a desired value of φ, ranging
from 32 to 128, so that øN varies from a low of 24 up to
a maximum of 96. In all cases, these values lie in the
strongly segregated regime.

The lamellar phase is drawn away from the extremes
of the circular/spherical unit domain approximation, but
still tilt severely off toward small φ. A typical configu-
ration for G8 dendrimer is shown in Figure 4. Here, NB
) 1, so that there are 28 - 1 ) 255 monomers on the
branched chain, and there are NA ) 510 monomers on
the A chain so that φ ) 1/3. While it was not possible to
determine the phase boundaries at this high a genera-
tion number, this configuration does represent a local
minimum in the free energy, and thus, it is a configu-
ration accessible in a real experiment. The dark domains

show the highest density of the dendritic arms, and the
white domains show the greatest density of the flexible
A chains. The A chains are confined to the interior of
highly distorted cylindrical domains, and the B chains
are confined to essentially flat domains with a convex
curvature concentrated at the hexagonal vertexes. Thus,
the free energy of the cylindrical domains is lowered
toward that of the lamellar domains, resulting in an
earlier lamellar-cylindrical transition that that pre-
dicted in the cylindrical unit cell model. While the
classical path approximation tends to overestimate the
effect that hyperbranching has on the shift in phase
lines, it gives quite good qualitative agreement with the
less restrictive lattice SCF calculations.

5. Discussion
The phase shifts predicted on the basis of the Alex-

ander-de Gennes approximation11 also give good quali-
tative agreement with the lattice SCF calculations, and
at first glance it could seem that this is the usual case
of a convenient approximation facilitating a nearly
analytic calculation. Relaxing the convenient assump-
tion leads to quantitatively, although not particularly
qualitatively, more accurate results, at a cost of con-
siderably more analytic and/or numerical effort. How-
ever, there are great differences between the Alexander-
de Gennes picture and the classical path picture for
dendrimer copolymers. In particular, while the free
energy per branched block in both schemes scales as
σ2N, the prefactor is generation dependent, and grows
exponentially as G is increased. For G10 dendrimers,
the free energy estimated in the Alexander model is a
factor of 1000 larger than than given by the classical
path picture.

To make the comparison, I follow the analysis of ref
11, estimating the free energy per branched block in the
Alexander picture. Here, I assume that all of the
dendrimer free ends lay at the same distance from the
AB interface in each of the flat, cylindrical, and spheri-
cal domains. In each case, the free energy of the A blocks
is the same, regardless of geometry

taking a slightly improved estimate over Semenov’s for
the free energy per chain grafted to a convexly curved
surface. The change comes about when considering the
B blocks, dendrimers grafted to either a flat surface
(lamellar), cylindrical surface, or a spherical surface. In
each case, it is necessary to estimate not only the
stretching energy per chain, but the required insertion
potential, P, capable of maintaining the chains with
their ends localized. For a linear brush at a coverage of
σ chains per unit area, the necessary potential is

Each free end of this layer executes a discontinuous
change in its degree of extension from a constant level
of dz/dn ) h/N ) σ to being unstretched right at the
edge of the brush. This discontinuity in the rate of
extension can only be maintained through a discontinu-
ous change in P(z), as above. When the chain is
regularly branched, like a dendrimer, the potential has

Figure 4. SCF profile for G8 dendrimers. The dendritic
polymers occupy the darkly shaded regions. This example has
φ ) 1/3. The cylinders are substantially distorted, so that the
“round/spherical” unit cell approximation must be abandoned.

FA )
hA

2

NA

π2

8
(57)

P(z) ) σ2 when z < h

) 0 otherwise (58)
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many discontinuities in it, which must be calculated to
determine the free energy of the chain. For a molten
dendrimer brush at a coverage σ, the degree of local
stretching can be determined simply from demanding
that space be filled. Essentially, this breaks the den-
drimer brush up into G linear brushes, all connected
end-to-end. The “height” of the outermost such sub-
brush (containing the free ends of the dendrimers) is
determined by hG ) 2G-1σN. This brush looks like an
extremely crowded brush of NB-molecular weight chains
packed in at a grafting density of 2Gσ. The final sub-
brush can be thought of as a brush of N-molecular
weight chains, at the initial coverage, so that h1 ) σN.
Thus, the chain trajectory that is required has the
chains most stretched far away from the grafting surface
and least stretched at the grafting surface. Thus, the
dendrimers are stretched the most where they keep
most of their monomers, in stark contrast to the end-
distributed, classical path model in Figure 2. There, the
dendrimers are most stretched near their trunks, and
are in fact asymptotically unstretched near their free
tips. Thus, one can expect the Alexander-de Gennes
picture for these dendrimer layers to overestimate free
energies wildly.

The end-distribution in the Alexander picture is
simple enough:

The fact that almost all of the molecular weight on the
chain is carried at the tips for the classical path analysis
gives an equally simple expression. Using the ap-
proximation

gives when inserted into eq 34

That is, ends are distributed uniformly in the asymp-
totic high G, flat limit. This fact (ê(zo) ) constant) is
preserved in the cylindrical and spherical geometries
as well. The asymptotic form for even G5 dendrimers
(flat) are obeyed amazingly well.17

The free energy of the grafted Alexander dendrimer
can be easily estimated, as by ref 11. Here

The Alexander free energy in eq 62 has been compared
to the free energy calculated in the classical path
analysis, and the ratio has been plotted in Figure 5. The
overestimate is extreme for high G (a factor on the order
of 1000 for G10 dendrimers), although naturally both
results scale in the same manner with the arm molec-
ular weight, NB, and the surface coverage σ. Also plotted
are the results of the Alexander approximation when
the dendritic brush is grafted to the exterior of a
cylindrical and spherical domain, such that the radius
of the substrate is equal to the layer thickness of the
grafted layer. For each of these moderate curvature
cases, the Alexander model drastically overestimates the
chain free energy, and thus the Alexander model has
to be applied very carefully.

Essentially, the Alexander picture so overestimates
the magnitude of the B-block free energy, that the
A-block free energy is quite irrelevant at high G. Thus,
it is not surprising that the Alexander picture funda-
mentally mischaracterizes the organization of the
branched blocks but does an equally bad job in the
lamellar, cylindrical, and spherical phases. Luckily, fair
predictions for the microphase boundaries are possible.
There is, however, a species of hyperbranched copoly-
mers for which the Alexander picture is essentially
exact. These are shown schematically in Figure 1D Here,
all of the B free ends are gathered together and are
joined to the A block. This “tip-graft” copolymer, while
exceedingly complex to synthesize, will force the grafted
blocks to organize themselves with the hyper-branched
tips most strongly stretched, and the free ends least
stretched. There should be a strong segregation of
B-type ends, and virtually all the stretching free energy
will be localized in the B blocks.

6. Conclusion
The flexible-dendrimer copolymer phase diagram has

been calculated in the classical path approximation, and
compares favorably to a numerical calculation with the
lattice SCF theory of Scheutjens and Fleer. While the
Alexander-de Gennes picture of these copolymer do-
mains also gives a qualitatively correct phase diagram,
that model seriously overestimates the stretching en-
ergy of the dendrimer molecules. The packing of free
ends in the dendrimer is asymptotically uniform (at
least as easy an approximation to handle as the Alex-
ander picture), although tip-graft dendrimer copoly-
mers should behave essentially as predicted by the
Alexander model. As previously predicted, the hyper-
branching of one of the species is sufficient to dramati-
cally swing the microphase diagram toward low values
of branched volume fraction.
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