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We report on numerical self-consistent field (SCF) calculations on the single-chain conformation of an
electrostatically charged, yet poorly soluble, flexible polymer. We find numerical evidence that a “necklace
ofbeads” conformation is self-organizedandspeculate that thepredictedcascadeof conformational transitions
can be probed via a single-chain mechanical experiment with an atomic force microscope.

Introduction

With the advent of new experimental techniques
involving atomic force microscopy (AFM) able to probe
the mechanical response of individual polymers to imposed
tension, a systematic study of the complicated, three-
dimensional structure of interesting polymers is possible.
Such experiments1 give detailed mechanical information
on the global statistical conformation of flexible macro-
molecules as well as a direct measurement of their
important structural length scales. For example, applied
tension2 causes a reorganization of DNA3 and polysac-
charides.4 The loads under which these reorganizations
occur can be used as a tension benchmark and has proven
useful in mechanical studies of the strength of individual
covalent bonds.5 Also, by pulling a single structural protein
from its host membrane, the resulting force vs extension
profile reflects the freeing and then the unraveling of the
chain’s secondary structures.6 These methods have also
been applied to the single-chain pullout of single homo-
polymers from a homopolymer matrix into a poor solvent,7
one of the important mechanisms in the physical fracture
of reinforced polymer blends.8,9 Thus, these single-chain
mechanical methods are capable of determining the native
conformations of macromolecules by determining their
response to an applied traction. A distinct advantage of
these experiments is that they determine the detailed
mechanical response of individual chains at a level of detail
ideally suited to comparison with the theoretical tools of
computational materials science.

There are obviously many choices available when
designing such an experiment: the chain can be either
biologically active or not, it can have specialized mesogenic

side groups or a simple architecture, and the chain can
either have an electric charge or not. In this paper, we
focus on charged, flexible chains, as they are predicted10,11

to undergo a striking structural rearrangement of their
monomers as solvent quality is decreased. In good solvents,
charged chains adsorb on an oppositely charged surface
readily. By pulling these chains from their adsorbed
layers,12 the features of the electrolyte layer and the
polyelectrolyte chain conformation become clear. In a poor
solvent, however, the situation is markedly different
because of a self-assembly of the chain into a “beaded-
necklace” conformation (Figure 1). We focus in this paper
on a numerical investigation of the conformations of poorly
soluble, electrostatically charged, flexible homopolymers
in a theoretical formalism closely mimicking single-chain
experiments. Thus, this paper can be seen as a proof of
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Figure 1. Schematic. In panel A, the schematic of the SCF
calculations is presented. The polymer has N monomers, is
flexible, and is uniformly charged with a charge/monomer given
by Re, where e is the electron charge. One end of the chain is
grafted at the center of the bottom circular plate, and the other
is grafted at the center of the upper plate. A rectangular lattice
is used to keep track of the cylindrical coordinates (r, z) labeling
azimuthally equivalent points in space. The plates are held a
distance LZ apart, and the radii of both plates is LR. In panel
B, quantities of importance in the qualitative scaling theory
are displayed: nb is the number of beads on the conformation,
each bead has a radius rb, and each stretched string has a length
l.
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principle that the well-established numerical self-con-
sistent field (SCF) method of polymer physics can be
successfully applied as a guide for experimentalists as
they search for mechanical evidence detailing the self-
organization of macromolecules. In particular, we inves-
tigate the complicated conformations of poorly soluble yet
uniformly charged homopolymers and hope to reinforce
the call13,14 for an experimental investigation similar to
that done on pullout7 and adsorbed polyelectrolytes.12

These insoluble, charged polymers undergo an intrigu-
ing cascade of transitions whereby the chain conformation
is characterized by charged globules connected by nearly
fully stretched strands.10,11 This scenario is amenable to
further analytic treatment15 and direct Monte Carlo
investigation.16,17 Our analysis will focus on the qualitative
models of ref 11 as expanded in refs 13 and 14 and the
numerical SCF calculations18 on fully three-dimensional
(yet highly symmetric) polyelectrolyte conformations. The
stretching of “necklace” conformations has been recently
subjected to a careful analysis in the context of scaling
theories with realistic geometry-dependent prefactors
faithfully accounted for,13,14 and the main experimental
signature of tension-induced necklace transitions is faith-
fully reproduced here (as in Figures 7 and 8): a charac-
teristic sawtooth pattern in the tension vs separation
response when the chain ends are held at a fixed distance
and the chain tension is allowed to fluctuate. This situation
can most commonly be arranged in a computer simulation
or SCF calculation as we detail below. On the other hand,
a plateau in the tension-separation profile should present
itself in a process in which the tension is fixed and the
distance between the chain ends is allowed to fluctuate.
If the chain ends are connected to an immobile surface on
one hand and the cantilever arm of an AFM on the other,
the “constant-tension” scenario is to be expected under
normal operating conditions for the AFM. That is, the
tension in the cantilever is set, and the distance between
the tip and the surface (and hence the distance between
the chain ends) is measured. Thus, the experimental
signature to be expected is a discontinuous jump in the
plate separation at characteristic and repeatable ten-
sions.

In our study, a single end-confined chain forms a bridge
between the two substrates, and the structure adopted by
the chain is qualitatively the same as free chains in bulk
solution, as long as the separation between the plates is
on the same scale as that of the elongated structures. The
case of bridging chains is relevant to polymer-adsorption-
induced gelation of a colloidal suspension, where the
charged chains adsorb on the surfaces of the colloidal
particles and naturally respond to any stress placed on
the gel.

We first discuss the application of our numerical SCF
lattice model to situations in which just a single polymer
chain is being studied and then discuss the qualitative
features of the cascade of necklace transitions that have
been predicted.11 Then, we demonstrate the cascade in
our theoretical model and specify the direct, mechanical

signature of the transition that can be looked for in a
single-chain experiment. Finally, we make our conclusions
and point to further work.

Model

The method of the SCF is a mature technique in polymer
physics. The first numerical lattice models of this sort, by
Scheutjens and Fleer,19 rely on repeated applications of
discrete recursion relations on a lattice to determine the
profiles and statistics of adsorbing polymers. The current
understanding of the diblock copolymer phase diagram20

as well as the behavior of thin films of diblock and triblock
copolymers21,22 indicate that these and similar methods23,24

are finding wide application.
All of these methods, however, rely upon the same

division of labor in finding the equilibrium conformation
of heavily entangled polymers: solving two coupled
problems. First, given an external potential, UA, that
couples to the density of monomer species A, it is possible,
numerically and on a lattice,19 or off-lattice in a space of
orthogonal functions of the required symmetry,20 to
determine the conformational statistics of a homopolymer
composed of A monomers. That is, the statistical weight
to be attributed to conformation can be determined.

What remains is to relate the potential UA to the
presence of all of the other chains in the system and to
ensure that (usually, although by no means necessarily,
especially when equation-of-state information25 is avail-
able) an incompressibility constraint is matched

with

Here, Uhc(rb) is a “hard-core” potential that affects all the
monomers in the problem equally, and ø is the Flory-
Huggins parameter describing the relative energy cost
(in units of kT) to bring A and B monomers into contact.
The function φB(rb) is the spatial distribution of the fraction
of the available space on lattice site rb that is occupied by
B monomers, and the angled brackets indicate a sum over
nearest-neighbor lattice sites. Self-consistency is assured
when Uhc(rb) can be determined, and UA and UB satisfy the
self-consistency equation (eq 1). Also, each lattice site is
completely filled with A and B monomers (eq 2). Once this
is accomplished, it is possible to calculate all thermody-
namic and structural information for the system.19

The application we have in mind here extends this
concept. The usual justification for the self-consistency
approximation is that a single chain encounters many
more of its neighbors than itself and therefore exists in
a mean field generated by the presence of its neighbors.
Self-consistency is assured when the neighboring chains
are forced to have the same statistics as the single chain
under consideration. Our situation, shown schematically
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in Figure 1, has but a single polymer chain existing in a
mean field generated by the solvent monomers (mol wt )
1) and itself. There are no other chains in the problem
except the polyelectrolyte. Even still, the calculation has
at least as much power as simple Flory-type arguments
predicting the electrostatic necklace cascade of transi-
tions.11

To show that our system is three-dimensional and
properly models the behavior of a single chain, we have
executed a preliminary calculation in which the bridging
chain is electrostatically neutral and the solvent is
athermal (ø ) 0). The results of this calculation are
presented in Figure 2. For each molecular weight inves-
tigated (N ) 100-5000), we determined the separation of
the plates for which the free energy of the bridging chain
is minimized. As in the original argument of Flory,26 the
fact that each end of the chain is anchored on opposite
surfaces generates an entropic attractive interaction that
causes the plates to swing together. Given that there are
N monomers permanently trapped between the plates, as
they come closer, the monomer density between the plates
increases, thus giving rise to a repulsive interaction. These
tendencies should balance for a plate separation that scales
as Rf ∼ N3/5, the Flory radius in three dimensions. As seen
in Figure 2, this three-dimensional, single-chain scaling
holds over the entire range of the calculation. Thus, while
the spirit of SCF calculations is violated by considering
a single chain tethered between the plate surfaces, the
agreement with scaling is a powerful validation of this
“single-chain” SCF calculation.

The parameters of the system are given schematically
in Figure 1. Our lattice has cylindrical geometry with
azimuthal symmetry about the central axis. The lattice
sites are labeled by rb ) (r, z), with 1 < r < LR, and 1 <
z < LZ, and the basic unit of length is the monomer size,
σ. Each lattice site accounts for a three-dimensional
annular volume. A polymer of molecular weight N has its
first monomer held at the lattice site rb) (1, 1), and its Nth
monomer held at rb ) (1, LZ). No polymer segments are
allowed to penetrate the circular surfaces at z ) 1 or z )
LZ, and no monomers are allowed to penetrate the outer

surface of the cylinder, r ) LR. We choose the polymer-
wall interaction to be characterized by the same polymer-
solvent ø parameter27,28 so that the adsorption and
desorption of chain segments will not affect the calculation.
Thus, all surfaces are nonadsorbing. Additionally, each
polymer segment is electrostatically charged with a
fraction R of an electronic charge, e. Taking e2/σ/ε ≈ kT
(where ε is the dc dielectric constant of the solvent), as is
appropriate for water as the solvent,29 we add an extra
term to the polymer segment potential:

where the subscript P denotes a polymer quantity and
the subscript S denotes a solvent quantity. Thus, we seek
self-consistency for a bridging, charged chain in control-
lable solvent conditions.

It should be pointed out that in all cases, we merely fix
the controllable parameters of the system (N, R, ø, LR, and
LZ) and determine the location of the interior monomer
segments in thermal equilibrium. We make no assump-
tions as to the number of “beads” on the conformation or
to their location or size. Apart from the assumptions of
the SCF model (a chain exists in a mean field determined
by its own conformation, and the chain exists on a lattice
with azimuthal symmetry about the center axis and
incompressibility, eq 2), the calculation is without many
of the a priori assumptions of the simple qualitative model
used to originally justify the possibility of a cascade of
necklace transitions.11

Qualitative Model: Cascade
This qualitative model is based on the following physi-

cally reasonable arguments.11 The chain is assumed
(Figure 1B) to be stretched out a length, LZ, and to be
composed of a number, nb, of spherical beads of radius rb,
equally spaced and connected by stretched strings of length
l. Furthermore, we assume that solvent conditions are so
poor that the beads are composed entirely of polymer
segments, and thus, the strings are fully stretched pieces
of chain with a lateral size on the order of σ. Two important
constraints can be placed on the polymer conformation:

Here, we explicitly suppress all geometric factors of order
unity (in contrast to the development in ref 11 and refs
13 and 14) to clarify the presentation and to emphasize
that this model (and the original one proposed in ref 11)
can only give qualitatively correct results. Essentially,
we have that every monomer in the chain is either in a
bead or in a string and that the lengthwise span of the
chain, LZ, is composed of the required number of beads
and strings. The approximate free energy of the chain has
two terms, one arising from the poor solvent and excluded
volume interactions (equivalently, the surface interactions
where polymer segments come into contact with solvent)
and one arising from the electrostatic interactions. The
surface interactions can be written as (again, suppressing
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Figure 2. Athermal solvent, ø ) 0; uncharged chains, R ) 0.
The equilibrium separation is determined by choosing LZ so
that the free energy in the system is minimized. For athermal
chains, this should scale as the chain mean end-end separation
or the Flory radius of swollen chains. The circles represent
SCF calculations in the cylindrical lattice, and the solid line is
a N3/5 power law for comparison.

UP ) Uhc + ø〈φS〉 + R2 ∫ drb drb′
φP(rb)φP(rb′)

|rb - rb′| (3)

Nσ3 ) nbrb
3/σ3 + (nb - 1)l/σ (4)

LZ ) nb(rb + l) - l (5)
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numerical prefactors of order unity):

Here, we take into account the surface area of each bead,
weighted by the polymer-solvent surface tension, γ, and
the free-energy cost of fully stretching the strings in the
presence of a bad solvent. The electrostatic energy can be
written as

where qb is the charge per bead; qb ) rb
3R. The first term

estimates the self-energy of each bead, and the second
term accounts for the electrostatic interactions between
separate beads. It is assumed that the strings contain far
fewer monomers than the beads, so that the electrostatic
interactions between strings may be neglected. The total
chain free energy is

and the equilibrium size and number of beads in the
conformation are chosen to minimize Ftot subject to the
constraints of eqs 4 and 5.

In the original work on this topic, several further
approximations are made in order to deduce some global
properties of the bead-necklace conformation. Namely,
the monomers in the stretchers are neglected in eq 4, and
the size of the beads is neglected in eq 5. Also, the
electrostatic interaction is approximated as

Thus, a simple scaling form for the interaction energy is
assumed: it scales as the total charge on the chain squared,
divided by the overall size of the stretched chain.

Minimizing Ftot with respect to both nb and LZ under
the constraints of eqs 4 and 5 and under the approximation
of eq 9 gives rise to two scaling laws:11

Thus, the overall equilibrium size of the chain scales such
as the total charge on the chain and the fractional charge
at which there is a transition from a chain with nb beads
to a chain with nb + 1 beads scales similarly to the inverse
square root of the chain molecular weight. We check both
of these scaling laws in the following section with our
SCF numerical technique. Thus, as R is increased at
constant N, there are successive transitions from con-
formations with 1 to 2 to 3, etc. beads. We leave unresolved
the issue of the condensation of neutralizing counterions
when the chains are strongly charged and focus instead
on the underlying beaded conformations.

SCF Model: Cascade
Exploring the beaded conformations in our SCF for-

malism is straightforward. In all of the calculations below,
the solvent-polymer interaction is kept at ø ) 2; that is,
the solvent conditions are very poor (where as above ø )

0 is an athermal interaction and ø ) 0.5 represents Θ
conditions for the electrically neutral polymer). We choose
N and R and then the dimensions of the cylindrical lattice.
LR is chosen to be large enough to not affect the calculation,
typically 20 lattice units (so that the cylinder has a
diameter of 40 lattice units). Then, a scan is made whereby
the upper and the lower plates are placed at various LZ.
At each LZ, a visual inspection of the conformation of the
polymer is made. Usually, for any given LZ, there are
multiple conformations to consider. For example, as in
Figure 3, at LZ ) 33, both a three- and a two-bead solution
to the self-consistent equations exist. In the ensemble of
the calculation (LZ is held fixed, and the interior monomers
are allowed to arrange themselves), assigning the equi-
librium conformation is merely a matter of numerically
calculating the free energy, F, of the conformation.19 The
conformation with the lowest F is the equilibrium con-
formation, in this case the two-bead chain. Thus, for each
pair of (N, R), a determination of the lowest energy
conformation can be made. Apparently, three-bead con-
formations are slightly metastable in Figure 3, but an
increase in R to 0.17 brings the three-bead conformations
to the absolute minimum of free energy, as in Figure 4.
By following the energies of the two- and three-bead
conformations, the transition point between the confor-
mations can be determined. Thus, as shown, there are
successive transitions from one to two to three beads on
a single bridging chain as the charge on the chain is
increased. In Figure 5, we show the location of the 1f2,
the 2f3, and the 3f4 transitions for a convenient array
of R and N values. The prediction, eq 11, for the location
of the cascade transitions is at least qualitatively con-
firmed with approximately the correct power-law behavior.

The scaling prediction for the overall equilibrium size
of the chain states that the main variation in LZ

eq scales
as the total charge ) RN on the chain. Figure 6 shows the
equilibrium size, over many chain conformations and

Fsurf ) nbrb
2γ + γlσ (6)

Fes ) nb

qb
2

rb

+ ∑
i*j

qb
2

rij

(7)

Ftot ) Fsurf + Fes (8)

Fes )
qb

2

rb
+

(nbqb)
2

LZ
(9)

LZ
eq ≈ nbqb ) NR (10)

Rnbfnb+1 ≈ xnb

N
(11)

Figure 3. Bead conformations, SCF calculations. For N ) 250
and R ) 0.15, successive scans over LZ allow the determination
of those plate separations at which the two- and three-bead
conformations are in mechanical equilibrium. The two-bead
conformation has a minimum of the chain free energy for LZ
) 32, while the three-bead conformation has its minimum at
LZ ) 33-34. Clearly, the mechanically stable three-bead
conformation costs more free energy than the mechanically
stable two-bead conformation and hence is unstable. Thus, we
identify the phase point (N, R) ) (250, 0.15) with the two-bead
phase. Chain conformations are shown, with black showing
high solvent density and white showing high polymer density.
The density in the center of the globules is ≈0.9 polymer.
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combinations of N and R, of the charged polymer, and
there is a striking confirmation of the scaling prediction
(eq 10). Note that the data in Figure 6 agrees only with
the leading power-law dependence predicted in ref 11. It
would seem that a more accurate fit to the data could be
had by modeling the data as linear with a nonzero x-axis
intercept. The fact that the data does not extrapolate

to zero (that is, zero charge leads to zero end-end
separation) is a manifestation of the fact that the chain
itself occupies a finite volume. For molecular weights in
the range of 100-400 used in this study, the size of a
completely collapsed globule is on the order of 6-7, clearly
the correct order of magnitude to explain the curious
disagreement with the scaling prediction. This illustrates
the power of the numerical SCF method. The fact of the
matter is that the scaling argument of ref 11 is not powerful
enough to predict more than the leading power-law
dependence of LZ

eq. The SCF calculation captures this
feature automatically. Thus, without making a priori
assumptions about the nature of the conformations of the
chain (apart from assuming that the chain ends in
equilibrium are far apart so that our bridging conforma-
tions will mimic those of chains in the bulk), the chains
manifestly self-organize into “folded” conformations under
the influence of just two types of interactions and two
types of monomers. We now turn to the crucial issue of
the means of detecting these transitions experimentally.

Numerical AFM Experiment: Constant Tension
The presence of “electrostatic beads” in a dilute solution

of poorly soluble, charged macromolecules can be detected
through a thorough examination of isotropic scattering
data spanning many length scales. However, with the
advent of single-molecule control and imaging, it is possible
to do far more than deduce length scales from scattering
data. In the absence of direct visualization of native chain
conformations, there are a host of mechanical tests that
can be made of the theory, in part inspired by the nature
of the SCF calculations18 we offer here and first suggested
in refs 13 and 14. The bridging geometry of our calculation
is closely related to an AFM single-chain traction experi-
ment. Here, one end of the chain is grafted on an immobile
surface, and the other is grafted to the cantilever arm of
the AFM. While it is most natural to fix the end-end
separation of the chain in these calculations, it is most
natural in an actual experiment to hold not the separation
but the tension between the chain ends constant. Thus,
to make contact between our calculations and an actual
experimental signature for the traction-induced transi-
tions requires taking our “constant LZ” information and
producing “constant chain tension” predictions. This
requires nothing more complicated than the common
tangent (equivalently “equal areas”) construction of
Maxwell.

Figure 4. Transitions in R. Here, we show the free energy of
the mechanically stable one-, two-, and three-bead conforma-
tions for N ) 250 as a function of R. A linear function of R has
been subtracted from these free energies to highlight the
transitions but of course does not affect their locations. At each
R, the bead conformation with the lowest free energy is the
equilibrium structure to be expected for bulk, ungrafted
polyelectrolytes. One-, two-, and three-bead domains are as
marked.

Figure 5. Diagram of states. Here, we demonstrate the
necklace cascade of transitions. The lines represent first-order
phase boundaries between the states with one, two, three, and
four beads. The transitions occur with RN1/2 ≈ constant, in
accordance with eq 11. Inset in the figure are typical conforma-
tions from our SCF calculations that clearly demonstrate the
validity of the “bead-and-string” hypothesis for the necklace
transition. The SCF profiles show a cross-section of the
cylindrical lattice. The corresponding three-dimensional struc-
tures can be generated by rotating these profiles through their
long, central axis.

Figure 6. LZ
eqvs Q ) RN. The scaling prediction, eq 10, is

verified in our model. Plotted is the value of LZ
eq for all multi-

bead (nb ) 2, 3, or 4) conformations in the study vs Q ) RN,
the total charge on the chain.
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Figure 7 shows the signatures that can be expected in
either case (tension fixed or separation fixed). The tension,
defined as ∂F/∂LZ, is shown as a function of plate separation
for N ) 300 and R ) 0.15. In the SCF fixed-LZ calculations,
at LZ ) 38, the three- and two-bead conformations have
the same free energy. The tension in the chain is quite
different, however, even though these conformations have
the same free energy. The two-bead tension is considerably
higher than the three-bead tension, so that increasing LZ
through the transition should give the dashed-line tension
response. That is, there should be a sudden drop in the
tension at the transition.

The same underlying two to three bead transition should
exist in the constant tension ensemble of an AFM
experiment. Here, however, the tension is held fixed, and
mechanical stability requires that the tension be an
increasing function of plate separation, LZ. Thus, the
response to be expected in the AFM is characterized by
the heavy solid line in Figure 7. That is, as the applied
tension is increased from slightly below 0.08 (in thermal
units giving the basic scale of tension as kT/σ ≈ 10-11 N
at room temperature), the separation of the AFM tip from
the immobile surface should jump discontinuously from
LZ ) 37 to 40. This discontinuity, on the order of 10% of
the typical end-end size of the unperturbed chain, should
be easily measurable. The “unphysical” region of LZ )
36-40 is merely that region of separations for which both
the two- and the three-bead conformations are metastable.
If it could be arranged to maintain the tension at its
transition value and also the average value of LZ to be
within this forbidden region, the lever rule will determine
the ensemble average of the resulting conformation (i.e.,
how often the three-bead vs the two-bead conformation
appears).

It should be noted that the curves shown in Figure 7
represent thermodynamic equilibrium only. The tension
is locally an increasing function of extension everywhere
except at the transition point where it is discontinuous
(constant LZ ensemble). Therefore, there is never a point

at which the two-bead structure becomes linearly unstable
to small-shape fluctuations leading to the transition to
the three-bead state. The transition from two to three
beads will thus always be characterized by an activation
energyandhenceakineticbarrier.Thus, sizable hysteresis
could be observable in real experiments, magnifying the
signatures of these tensile bead transitions.

Given the model defined by eqs 4-8 (yet relaxing the
extra assumptions in eq 9), it is also possible to track the
traction-induced cascade of transitions between different
beaded states. Here, the numerical prefactors that have
been neglected in the model will surely affect the numerical
results, but the qualitative features of the model are valid
and agree with those set forth in refs 13 and 14. As in
Figure 8, mechanical instabilities occur near the transi-
tions between, in this case, the native nb ) 6 and the
excited nb ) 7 states. Here, N ) 500 and R ) 0.1. There
are transitions from nb ) 6 to 7 and then to nb ) 8 and
then back to nb ) 7. Each transition in this qualitative
model has a jump in separation under constant tension
conditions of ≈2% of the native conformation size and
thus is easily detectable with current AFM techniques.

One final note concerns the curious “re-entrancy” of the
tension-induced transitions. In the example presented
here, adding tension to the chain induces a transition
from a six-bead structure, to a seven-bead structure, to
an eight-bead structure, and then back to the seven-bead
structure. This re-entrancy is a general feature of the
tension-induced configuration diagrams in refs 13 and
14.

It should be pointed out that these single-chain AFM
techniques offer many advantages over analyzing the
collective scattering from dilute solution. The measure-
ment is unaffected by polydispersity. The location of the
cascade transition points depends strongly on the mo-
lecular weight of the polyelectrolyte, so that many different
bead-chain conformations are averaged over in a scattering
experiment. Thus, the scattering signature of these
transitions is extremely hard to detect. There is no such
constraint with single-chain experiments. Not only is the
molecular weight fixed for the chain under study, but it
is extremely well-characterized by simply extending the
chain to its full extent. Also, the cascade of transitions
proposed in ref 11 results in a similar tension-induced set
of transitions for the single chain under study in refs 13,

Figure 7. Traction-induced transitions, SCF. Results of SCF
calculations on an N ) 300, R ) 0.15 chain. The force required
to hold the plates at a particular LZ depends on the number of
beads on the chain conformation. Thermodynamic stability
requires that this force profile be monotonic as LZ increases,
but at each transition, the tension drops discontinuously.
Maxwell constructions are required, and the transition from nb
) 2 to nb ) 3 at LZ ) 38 becomes a relatively wide coexistence
zone. Similarly, at higher tensions, the middle bead on the
conformation is destroyed in a first-order transition, again with
a wide coexistence region. In an AFM experiment, there should
be a sizable jump in the tip-surface separation during such a
transition.

Figure 8. Traction-induced transitions, scaling model. Results
from the qualitative scaling picture, showing coexistence-
widened transitions from nb ) 6 to nb ) 7 to nb ) 8 and then
back to nb ) 7. A spectrum of transitions should be visible in
an AFM experiment. The model parameters for this calculation
are N ) 500, R ) 0.1.

5116 Langmuir, Vol. 17, No. 16, 2001 Pickett and Balazs



14, and 18. Coupled with a direct visualization of the
charged chain, this technique will offer a direct, incon-
trovertible check on these theoretical discussions. The
experimental details of neutralizing the AFM tip and
suitably grafting the polyelectrolyte are complicated but
offer yet another possible control on the transitions by
applying a controllable voltage across the chain. This
electromechanical method of detecting and inducing the
shape changes of the “necklace-bead” transition will be
the subject of further theoretical study.30

Conclusion
We have studied the native conformation of bridging

poorly soluble yet charged polyelectrolytes. The necklace-
bead cascade of transitions as well as the mechanical
means of inducing and detecting the transitions is evident.
The calculation suggests a feasible experiment to settle
the matter of the solution conformation of such chains.
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