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e Stuff we want to do:

o Strengthen mixtures of plastics
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o 0 Incompatible plastics
g 7 Combine properties
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P gt (strength, flexibility)

o Lubricate/protect surfaces

v 0 Prevent contact
o Avoid damage




e Stuff that can do it.

o Stitching polymers: reinforce mixtures

0 Half blue/half red
reinforces interface.

o End- grafted polymers lubrication

% o  Trapped coating
M o “Osmotic” barrier
o Amphiphillic polymers: housing for droplets

o Polymer forms vesicles
0  Release contents, pH e.g.

0 Block copolymers templates for ordering
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e Polymers

C_C Styrene
& 104AMU
o Are made of monomers... 6_ 1nm

o ... strung together into huge chains...

Polystyrene
1000 monomers:104,000AMU
1000Nnm = 1pum

o ... which mostly ignore h...

AXAD = (1nm)(10°AMUY) = 108Lh

o ...and are all tangled up. Y~>_>¢

o  Entangling, knots
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Outline:

Single-chain self-assembly “folding™




o Polyelectrolyte, poor solvent

o Fixed charge Q = aN on a flexible polymer, N
monomers.

0 Poor solvent:

5 Q, N control conformation.

Dobrynin,Rubinstein,Obukhov
Macromolecules, 1996, 29, 2974
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“Necklace”

o Cascade of transitions.




e Instability for Charged Oil Drop

o Lord Rayleigh:
Cohesion, surface tension

&
?
&
?

4—»_ e —— ) —-
Electrostatic Self-Interaction

o If charge exceeds threshold, surface tension can’t
maintain the droplet.

o Chain CAN’T break up.




e Cartoon theory for chain

o Free energy of necklace conformation:

Number of beads: M = 4

F = MR? + 22 BSng SR+

2
Ly+Q

o Predicts transitions froml1to2to...




e Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and Hall, London 1993

o Lattice model
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HEEN
1111111 = 1. Start with empty lattice
....:... 2. Throw down polymers
ENENGEEE at random
HEEEEEEEN

3. Calculate average
EEEEEEEE monomer densities

4. Regrow the chains
5. Recalculate the
monomer densities
6. Repeat

o Azimuthal symmetry, cylindrical lattice.
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2-D Cylindrical lattice

Azimuthal symmetry:
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r,z label annular section of three
dimensional space.

Polymer is held at center of top
and bottom plate “bridging”
Electrostatics, surface energy,
chain connectivity are all
accounted for

Variations in 2D, but real 3D structures (highly

symmetric).




e Compare structures:

o Atfixed N, a vary L to find equilibrium structures.
- N =250,a = 0.16,x = 2.0:

F

261.0 ‘ ‘ ‘ ‘ ‘ ‘
250 27.0 29.0 31.0 330 350 37.0 39.0|

1 Lgg minimizes F. Possible experiment.




e Diagram of states:
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0 “Folded” conformations.
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Outline:

Single-chain self-assembly “folding™




Block copolymers

Two Kinds of monomers strung together.
W WB
W

1 A-block and B-block: “diblock™

Unless you break bonds, micro-scale texture
happens.




e Asymmetric diblocks
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Coarse-grained Free Energy for Diblocks

Local interactions for order parameter ¢ = ¢ , —¢g

Flocal0] = [[30° #5300+ @+ |ox

Long-ranged interactions

|zlong-range[(l)] = Jdxfdx'BO(x)G(x, X )9(X’)

1 Ohta and Kawasaki:
0,G(X,X) = & (X—X)

Formally, same as electrostatics.

1 A monomers negative, B monomers positive




« Minimizing F gives diblock-like structures

o  Cahn-Hilliard
dynamics

o Lamellar phase
o Scattering

Cylinder phase
Scattering

O O




o Electrostatic analogy for Diblocks

1 Elasticenergy <« Electrostatic self-energy

o Semenov, chain stretching similar to electric field:
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o Alexander, deGennes, and elaborations
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o Blend of polyelectrolytes:

o Polycation and polyanions mixed together:

Electroneutral

o Poly-salt melt... what might it do. Phase separate?




Blend to consider

Let both chains have the same number of
monomers (can be relaxed...)

Let the CHARGE/monomer on the majority
component be fixed.

Electroneutrality then relates the CHARGE/
monomer of minority component to composition:

0 = ppf+pg(l-f)

Minority chain is more strongly charged than
majority chain... synthetic chemistry.




o Can expect a mesophase.

o Phase separation: huge electrostatic costs

“Collecting like charges”

o Single phase: huge specific interactions

N red monomers:
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RPA for Disordered Phase

Locate linear instability of the uniform phase.
(¢A+¢B =1) 0 (I)A = f+¢’¢B = (1-f)+¢
f = fraction of A monomersin system
Collective scattering function for order parameter
sl =5, T+sg 4

2 B
a = 6—2 giving thermal response for fluctuations of ¢
o9 218 2
FIo] = X0 (1-0)+ = 50

a°(1-f)°

Enforces incompressibility, chain architecture




e RPA cont.

o Single-chain scattering functions:
SA = fgd(q, N) Dell:\)?/e scattering from Gaussian chain

, N) = L orentzian approximation
gd(q ) 1+ Nq2/12
o Typical scattering function:
S(a) . S(q)
Increasing X N ncé%?gng/Chan
q q

o Peak diverges when

1 B .
N).. . = N N./B = charge/ch
(X )Spm 2f(1—f) ¥ J3f(1_f)3’ [ chargerchan




e Strong-Segregation Limit
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e Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and Hall, London 1993

o Lattice model

gasgnes

1. Start with empty lattice

...:III 2. Throw down polymers
HENEEQEEN at random

3. Calculate average
EEEEEEEE monomer densities

4. Regrow the chains
5. Recalculate the
monomer densities
6. Repeat

o Charged blend, lattice electrostatics.
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Lattice Electrostatics

Discretize Laplacian:

0909 (X, y+1)+d(X,y—1)+d(x+1y) +d(x—1,y)
—40(Xx,y)

Gauss’ Law discretized:
2
D = 4m( pA(I)A + pB(I)B)
Solve for @, electrostatic potential, involves

Inverting a linear operator on the lattice

Solved numerically at each iteration by direct
Inversion.




e« Microphases (just like block copolymers)

Charge/monomer=0.01 N=150
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XN (Inverse Temerature)

Microphases (just like block copolymers)

Charge/monomer=0.01 N=150
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Charge compatibilizes the blend

Neutral Blend N=150

p,=0.01 N=150 p, = 0.02, N=150

\ cylindrical

Disordered

— — Lorentzian RPA

Simple architectures (Just homopolymers) but
complex patterns.

Long-range vs. short-range, generic physics.




e Comparison, SCF RPA

o Disordered-Lamellar transition forf = 1/2:
50 . I ' | ' | !

- | O—0O N=100
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A0+ <O—< N=1000

— RPA with Lorentzian g(q)

— — RPA with Debye g(q)
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e Films

o  Lower surface held at a
constant potential

o Upper surface is vacuum

o Confinement and external
field controls morphology

-
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e Conclusions

o Single-molecule “beads” generic folding problem
s \\y ;o b

) http://www.bioc.rice.edu/
Bioch/Phillips/gfpbio.html

1 Photonic crystals?

“ I mhof and .J. Pine, Advanced Materials
10, 697-700 (1998).

o Charge-separated layers, Polymer LED’s
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