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● Stuff we want to do:

❑ Strengthen mixtures of plastics

❑ Lubricate/protect surfaces

❑ Encapsulate drugs

❑ Create patterns

☛ Incompatible plastic
☛ Combine properties

(strength, flexibility

☛ Prevent contact
☛ Avoid damage

☛ Symmet
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● Stuff that can do it.

❑ Stitching polymers: reinforce mixtures

❑ End-grafted polymers: lubrication

❑ Amphiphillic polymers: housing for dr

❑ Block copolymers: templates for orderi

☛  Half blue/half r
reinforces interfa

☛ Trapped coating
☛ “Osmotic” barri

☛ Polymer forms ve
☛ Release contents, 
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● Polymers

❑ Are made of monomers... 

❑ ... strung together into huge chains...

❑ ... which mostly ignore 

❑ ... and are all tangled up. 
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☛ Entangling, k



● Outline:

❑ Single-chain self-assembly “folding”

❑ Many-chain “super-structures”



mer,  N

…

binstein,Obukhov
les, 1996, 29, 2974
● Polyelectrolyte, poor solvent

❑ Fixed charge  on a flexible poly

monomers.

❑ Poor solvent:

☛  control conformation.

❑ Cascade of transitions.

Q αN=

Q N,

Q 0=
Q 0>

Dobrynin,Ru
Macromolecu

“Necklace”
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● Instability for Charged Oil Drop

❑ Lord Rayleigh:

❑ If charge exceeds threshold, surface ten

maintain the droplet.

❑ Chain CAN’T break up.

Cohesion, surface tension

Electrostatic Self-Inte
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● Cartoon theory for chain

❑ Free energy of necklace conformation:

❑ Predicts transitions from 1 to 2 to ...

R

L

M =Number of beads:
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● Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and 

❑ Lattice model

❑ Azimuthal symmetry, cylindrical lattice

☛ 1. Start w
☛ 2. Throw

at rando
☛ 3. Calcu

monom
☛ 4. Regro
☛ 5. Recal

monom
☛ 6. Repea
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● 2-D Cylindrical lattice

❑ Azimuthal symmetry:

❑ Variations in 2D, but real 3D structures

symmetric).

r

z

☛ r,z label annula
dimensional sp

☛ Polymer is held
and bottom pla

☛ Electrostatics, s
chain connectiv
accounted for
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● Compare structures:

❑ At fixed  vary  to find equilibrium
☛ :

☛  minimizes . Possible experime

N α, L
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● Diagram of states:

❑ “Folded” conformations.
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● Outline:

❑ Single-chain self-assembly “folding”

❑ Many-chain “super-structures”
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● Block copolymers

❑ Two kinds of monomers strung togethe

☛ A-block and B-block: “diblock”

❑ Unless you break bonds, micro-scale te

happens.

A
B
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m.edu/mauritz/block.html
● Asymmetric diblocks 

❑ = fraction of A on molecule, controls sf

 M. W. Matsen and F. S. Bates, Macromolecules; 1996; 29(4); 1091.

http://www.psrc.us
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● Coarse-grained Free Energy for Diblock

❑ Local interactions for order parameter 

❑ Long-ranged interactions

☛ Ohta and Kawasaki:

❑ Formally, same as electrostatics.

☛ A monomers negative, B monome

Flocal ϕ[ ] t
2
---ϕ2 k

2
--- ϕ∇ ϕ∇• ϕ+ +∫=

ϕ

Flong-range ϕ[ ] x x'Bϕ x( )G x,(d∫d∫=

2G x x',( )x∇ δ x x'–( )–=
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Cahn-Hilliard 
dynamics 

Lamellar phase
Scattering

Cylinder phase
Scattering
● Minimizing F gives diblock-like structu

☛

☛

☛

☛

☛
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● Electrostatic analogy for Diblocks

❑ Elastic energy  Electrostatic self-e

❑ Semenov, chain stretching similar to ele

❑ Alexander, deGennes, and elaborations

⇔
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● Blend of polyelectrolytes:

❑ Polycation and polyanions mixed toget

❑ Poly-salt melt... what might it do. Phase
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-
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+
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-
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Electroneutral
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● Blend to consider

❑ Let both chains have the same number 

monomers (can be relaxed...)

❑ Let the CHARGE/monomer on the maj

component be fixed.

❑ Electroneutrality then relates the CHAR

monomer of minority component to com

❑ Minority chain is more strongly charge

majority chain... synthetic chemistry.
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● Can expect a mesophase.

❑ Phase separation: huge electrostatic cos

❑ Single phase: huge specific interactions
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“Collecting like charges”
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● RPA for Disordered Phase

❑ Locate linear instability of the uniform

❑ Collective scattering function for order

❑ Enforces incompressibility, chain archi
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● RPA cont.

❑ Single-chain scattering functions:

❑ Typical scattering function:

❑ Peak diverges when

SA fgd q N,( )  Debye scattering from Ga=

gd q N,( )
N
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● Strong-Segregation Limit

❑ Just a balance of surface energy and ele
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● Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and 

❑ Lattice model

❑ Charged blend, lattice electrostatics.

☛ 1. Start w
☛ 2. Throw

at rando
☛ 3. Calcu

monom
☛ 4. Regro
☛ 5. Recal

monom
☛ 6. Repea
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● Lattice Electrostatics

❑ Discretize Laplacian:

❑ Gauss’ Law discretized:

❑ Solve for , electrostatic potential, invo

inverting a linear operator on the lattice

❑ Solved numerically at each iteration by

inversion.
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● Microphases (just like block copolyme
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● Microphases (just like block copolyme
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● Charge compatibilizes the blend

❑ Simple architectures (just homopolyme

complex patterns.

❑ Long-range vs. short-range, generic phy
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● Comparison, SCF RPA

❑ Disordered-Lamellar transition for f =

0 2 4 6
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● Films

Film
No

Field

External
Field

☛ Lower surface held at a 
constant potential

☛ Upper surface is vacuum
☛ Confinement and external 

field controls morphology
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● Conclusions

❑ Single-molecule “beads” generic foldin

❑ Charged blends make microphases Len

controlled by charge/chain not molecul

☛ Photonic crystals?

❑ Charge-separated layers, Polymer LED’

Other foldings htt
B

Imhof and D.J.
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