Self Assembly of Charged Polymers

Galen T. Pickett

Department of Physics and Astronomy, California State University Long Beach

- Stuff we want to do:
- Strengthen mixtures of plastics

- Incompatible plastics
- Combine properties (strength, flexibility)
- Lubricate/protect surfaces

Encapsulate drugs

Create patterns

- Stuff that can do it.
- **Stitching polymers: reinforce mixtures**

- Half blue/half red reinforces interface.
- **End-grafted polymers: lubrication**

- Trapped coating "Osmotic" barrier
- **Amphiphillic polymers: housing for droplets**

- Polymer forms vesicles
- Release contents, pH e.g.
- **Block copolymers: templates for ordering**

http://www.princeton.edu/~polymer/

Polymers

□ Are made of monomers...

... strung together into huge chains...

Polystyrene

1000 monomers: 104,000AMU $1000 nm = 1 \mu m$

 \Box ... which mostly ignore h...

$$\Delta x \Delta p \approx (1 nm)(10^5 \text{AMU} v) \approx 10^8 \frac{v}{m/s} h$$

... and are all tangled up.

Entangling, knots

Outline:

Single-chain self-assembly "folding"

Many-chain "super-structures"

- Polyelectrolyte, poor solvent
- □ Fixed charge $Q = \alpha N$ on a flexible polymer, N monomers.
- Poor solvent:
 - \blacksquare Q, N control conformation.

Cascade of transitions.

- Instability for Charged Oil Drop
- Lord Rayleigh:

- If charge exceeds threshold, surface tension can't maintain the droplet.
- Chain CAN'T break up.

- Cartoon theory for *chain*
- Free energy of necklace conformation:

$$F = M\left(\gamma R^2 + \left(\frac{Q}{M}\right)^2 R^{-1}\right) + Q^2$$

$$L\gamma + \frac{Q^2}{L}$$

Predicts transitions from 1 to 2 to ...

Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and Hall, London 1993

Lattice model

Azimuthal symmetry, cylindrical lattice.

• 2-D Cylindrical lattice

Azimuthal symmetry:

- r,z label annular section of three dimensional space.
- Polymer is held at center of top and bottom plate "bridging"
- Electrostatics, surface energy, chain connectivity are all accounted for

Variations in 2D, but real 3D structures (highly symmetric).

Compare structures:

f At fixed N, lpha vary L to find equilibrium structures.

$$N = 250, \alpha = 0.16, \chi = 2.0$$
:

 $-L_{eq}$ minimizes F. Possible experiment.

Diagram of states: **Ω**₈ 0.17 0.16 0.15 0.14 0.13 $\alpha = N^{-1/2}$ N100 400 "Folded" conformations.

• Outline:

Single-chain self-assembly "folding"

Many-chain "super-structures"

Block copolymers

□ Two kinds of monomers strung together.

- A-block and B-block: "diblock"
- Unless you break bonds, micro-scale texture happens.

Asymmetric diblocks

 \neg f= fraction of A on molecule, controls symmetry:

- Coarse-grained Free Energy for Diblocks
- □ Local interactions for order parameter $\varphi = \varphi_A \varphi_B$

$$F_{\text{local}}[\varphi] = \int \left[\frac{t}{2} \varphi^2 + \frac{k}{2} \nabla \varphi \cdot \nabla \varphi + \varphi^4 \right] dx$$

Long-ranged interactions

$$F_{\text{long-range}}[\varphi] = \int dx \int dx' B\varphi(x) G(x, x') \varphi(x')$$

Ohta and Kawasaki:

$$\nabla_{\mathbf{X}}^{2}G(\mathbf{X},\mathbf{X}') = -\delta(\mathbf{X}-\mathbf{X}')$$

- **□** Formally, same as electrostatics.
 - A monomers negative, B monomers positive

Minimizing F gives diblock-like structures

- Cahn-Hilliard dynamics
- Lamellar phase
- Scattering

- Cylinder phase
- Scattering

- Electrostatic analogy for Diblocks
- □ Elastic energy ⇔ Electrostatic self-energy
- Semenov, chain stretching similar to electric field:

☐ Alexander, deGennes, and elaborations

• Blend of polyelectrolytes:

Polycation and polyanions mixed together:

Poly-salt melt... what might it do. Phase separate?

Blend to consider

- Let both chains have the same number of monomers (can be relaxed...)
- Let the CHARGE/monomer on the majority component be fixed.
- Electroneutrality then relates the CHARGE/ monomer of minority component to composition:

$$0 = \rho_{\mathbf{A}} f + \rho_{\mathbf{B}} (1 - f)$$

 Minority chain is more strongly charged than majority chain... synthetic chemistry. Can expect a mesophase.

Phase separation: huge electrostatic costs

"Collecting like charges"

Single phase: huge specific interactions

N red monomers: total cost χ N

RPA for Disordered Phase

Locate linear instability of the uniform phase.

$$(\phi_{A} + \phi_{B} = 1) \Rightarrow \phi_{A} = f + \phi, \phi_{B} = (1 - f) + \phi$$
 $f = \text{fraction of A monomers in system}$

Collective scattering function for order parameter

$$S^{-1}[q] = S_A^{-1} + S_B^{-1} + \alpha$$

$$\alpha = \frac{\delta^2 F}{\delta \varphi^2} \text{ giving thermal response for fluctuations of } \varphi$$

$$F[\varphi] = \chi \varphi (1 - \varphi) + \frac{2\pi B}{q^2 (1 - f)^2} \varphi^2$$

Enforces incompressibility, chain architecture

• RPA cont.

Single-chain scattering functions:

$$S_A = fg_d(q, N)$$
 Debye scattering from Gaussian chain $g_d(q, N) \approx \frac{N}{1 + Nq^2/12}$ Lorentzian approximation

Typical scattering function:

Peak diverges when

$$(\chi N)_{\text{spin}} = \frac{1}{2f(1-f)} + N \sqrt{\frac{\pi B}{3f(1-f)^3}}, \quad N\sqrt{B} = \text{charge/chain}$$

Self-consistent Lattice Model

Fleer, Cohen, Scheutjens, Cosgrove, Vincent, Polymers at Interfaces Chapman and Hall, London 1993

Lattice model

Charged blend, lattice electrostatics.

• Lattice Electrostatics

Discretize Laplacian:

$$\nabla^2 \varphi \Rightarrow \varphi(x, y+1) + \varphi(x, y-1) + \varphi(x+1, y) + \varphi(x-1, y) - 4\varphi(x, y)$$

Gauss' Law discretized:

$$\nabla^2 \Phi = 4\pi (\rho_A \phi_A + \rho_B \phi_B)$$

- \Box Solve for Φ , electrostatic potential, involves inverting a linear operator on the lattice
- Solved numerically at each iteration by direct inversion.

Charge compatibilizes the blend $\rho_A = 0.01 \ N = 150$ $\rho_{\rm A} = 0.02, N=150$ Neutral Blend N=150 Lamellar Cylindrical Lamellar Cylindrical 15 15 ≥ 10° ≥ 10 $\gtrsim 10$ 2 Phase Disordered 5 Disordered Single Phase 0.2 0.3 0.1 0.4 0.5 0.1 0.5 0.1 0.5 0.2 0.3 0.3 0.4 **Increasing charge** Simple architectures (just homopolymers) but complex patterns. Long-range vs. short-range, generic physics.

Comparison, SCF RPA

□ **Disordered-Lamellar transition for** f = 1/2**:**

Films Lower surface held at a constant potential Upper surface is vacuum Confinement and external field controls morphology **Film** Φ vacuum No Field grounded **External Field** 125 75 100 125

- Conclusions
- □ Single-molecule "beads" generic folding problem

Other foldings

http://www.bioc.rice.edu/ Bioch/Phillips/gfpbio.html

- Charged blends make microphases Length scale controlled by charge/chain not molecular weight
 - Photonic crystals?

Imhof and D.J. Pine, Advanced Materials 10, 697-700 (1998).

Charge-separated layers, Polymer LED's

