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Abstract: A set of hypotheses i~' formulated for a connectionist approach to cognitive modeling. These hypotheses are shown to be
incompatible with the hypotheses underlying traditional cognitive models. The connectionist models considered are massively
parallel numerical computational systems that are a kind of continuous dynamical system. The numerical variables in the system
correspond semantically to fine-grained features below the level of the concepts cons<.:iously used to describe the task domain. The
level of analysis is intermediate between those of symbolic cognitive models and neural models. The explanations of behavior
provided are like those traditional in the physical sciences, unlike the explanations provided by symbolic models.

Higher-level analyses ofthese connectionist models reveal subtle relations to symbolic models. Parallel connectionist memory and
linguistic processes are hypothesized to give rise to processes that are describable at a higher level as sequential rule appliC1.tion. At
the lower level, compntation has the character of massively parallel satisfaction of soft numerical constraints; at the higher level, this
can lead to competence charactcrizahle by hard rules. Performance will typically deviate frqm this competence since behavior is
achieved not hy interpreting hard rules but by satisfYing soft constraints. The result is a picture in which traditional and connectionist
theoretical constructs collaborate intimately to provide an understanding of cognition.
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1. Introduction

In the past half-decade the connectionist approach to
cognitive modeling has grown from an obscure cult claim
ing a few trn.e believers to a movement so vigorol1s that
recent meetings of the Cognitive Science Society have
begun to look like connectionist pep rallies. With the fise
of the connectionist movement come a ntunber of funda
mental questions which are the subject of this target
article. I begin with a brief description of connectionist
models.

1.1. Connectionist models. Connectionist models are large
networks of simple parallel computing elements, each of
which carries a Illllnerical activation value which it com
ptltes from the valtles of neighboring elements in the
network, using some simple numerical formula. The
network elements, or units, influence each other's valtles
throtlgh connections that carry a numerical strength, or
weight. The infltlence of lIIlit i on tIIlitj is the activation
valtle of tIIlit i times the strength of the connection fmm i
to j. Thtls, if a unit has a positive activation value, its
influence on a neighbor's value is positive if its weight to
that neighbor is positive, and negative if the weight is
negative. In an ohvious neural allusion, connections car
rying positive weights arc called excitatory and those
carrying negative weights are inhibitory.

In a typical connectionist model, input to the system is
provided by imposing activation values on the input units
of the network; these ntImerical values represent some
encoding, or representation, of the input. The activation

on the input units propagates along the connections until
some set ofactivation values emerges on the output units;
these activation values encode the output the system has
computed from the input. In hetween the input and
output units there may he other units, often called hidden
units, that participate in representing neither the input
nor the OtItput.

The computation performed by the network in trans
forming the input pattern ofactivity to the Otltput pattern
depends on the set ofconnection strengths; these weights
are usually regarded as encoding the system's knowledge.
In this sense, the connection strengths play the role ofthe
program in a conventional comptlter. Much of the allure
of the connectionist approach is that many connectionist
networks program themselves, that is, they have alltono
mous procedllres for tnning their weights to eventually
perform some specific computation. StIch learning pro
cedtlres often depend on training in which the network is
presented with sample input/otItptlt pairs from the func
tion it is supposed to comptlte. In learning networks with
hidden units, the network itself "decides" what computa
tions the hidden units will perform; because these tmits
represent neither inputs nor outputs, they are never
"told" what their values should be, even during training.

In recent years connectionist models have been devel
oped for many tasks, encompassing the areas of vision,
language processing, inference, and motor control. Ntl~

merous examples can be fotmd in recent proceedings of
the meetings of the Cognitive Science Society; Cognitive
Science (1985); Feldman et aJ. (1985); Hinton and Ander
son (1981); McClelland, Rumelhart, aud the PDP Re-
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search Group (1986); Rumelhart, McClelland, and the
PDP Research Group (1986). [See also Ballard "Cortical
Connections and Parallel Processing" BBS 9(1) 1986.]

1.2. Goalofthis target article. Given the rapid development
in recent years of the connectionist approach to cognitive
modeling, it is not yet an appropriate time for defmitive
assessments of the power and validity of the approach.
The time seems right, however, for an attempt to articu
late the goals of the approach, the fundamental hypoth
eses it is testing, and the relations presumed to link it with
the other theoretical frameworks of cognitive science. A
coherent and plausible articulation ofthese fundamentals
is the goal of this target article. Such an articulation is a
nontrivial task, because the term "connectionist" enCOIn
passes a number of rather disparate theoretical frame
works, all of them quite undeveloped. The connectionist
framework I will articulate departs sufficiently radically
from traditional approaches in that its relations to other
parts of cognitive science are not simple.

For the moment, let me call the formulation of the
connectionist approach that I will offer PTe. I will not
argue the scientific merit of PTC; that some version of
connectionism along the lines ofPTC constitutes a "prop
er description ofprucessing" is argued ebewhere (e.g., in
Rumelhart, McClelland & the PDP Research Group
1986; McClelland, Rumelhart & the PDP Research
Group 1986). Leaving aside the sdentmc merit ofconnec
tionist models, I want to argue here that PTC offers a
"Proper Treatment of Connectionism": a coherent for
mulation of the connectionist approach that puts it in
contact with other theory in cognitive science in a particu
larly constructive way. PTC is intended as a formulatioll
of connectionism that is at once strong enough to con
stitute a 1l1ajor cognitive hypothesis, comprehensive
enough to face a nu mber ofdifficult challenges, and sound
enough to resist a number of objections in principle. If
PTC succeeds in these goals, it will facilitate the real
business at hand: Assessing the-scientific adequacy of the
connectionist approach, that is, determining whether the
approach offers computational power adequate for human
cognitive competence and appropriate computational
mechanisms to accurately model human cognitive
performance.

PTC is a response to a number of positions that arc
being adopted concerning connectionism - pro, con, and
blandly ecumenical. These positions, which are fre
quently expressed orally but rarely set down in print,
represent, I believe, failures of supporters and critics of
the traditional approach truly to come to grips with each
other's views. Advocates of the traditional approach to
cognitive modeling and AI (artificial intelligence) are
often willing to grant that connectionist systems are
useful, perhaps even important, for modeling lower-level
processes (e.g., early vision), or for fast and fault-tolerant
implementation of conventional AI programs, or for un
derstanding how the brain might happen to implement
LISP. These ecumenical positions, I believe, fail to ac
knowledge the true challenge that connectionists are
posing to the received view of cognition; PTC is an
explicit formulation of this challenge.

Other supporters of the traditional approach find the
connectionist approach to be fatally flawed hecause it
cannot offer anything new (since Universal Turing ma-

2 BEHAVIORAL AND BRAIN SCIENCES (1988) 11:1

chines are, after all, "universal"), or because it cannot
offer the kinds of explanations that cognitive science
requires. Some di~miss connectionist models on the
grounds that they are too neurally unfaithful. PTC has
been designed to withstand these attacks.

On the opposite side, most existing connectionist mod
els fail to come to grips with the traditional approach 
partly through a neglect intended as benign. lt is easy to
read into the connectionist literature the claim that there
is no role in cognitive science for traditional theoretical
constructs such as rules, sequential processing, logic,
rationality, and conceptual schemata or frames. PTC
undertakes to assign these constructs their proper role in
a connectionist paradigm for cognitive modeling. PTC
also addresses certain foundational issues concerning
mental states.

I see no way of achieving the goals of PTC without
adopting certain positions that will be regarded by a
number of connectionists as premature or mistaken.
These are inevitable consequenccs of the fact that the
connectionist appr9ach is still quite underdeveloped, and
that the term "connectionist" has come to label a number
of approaches that embody significantly conflicting as
sumptions. PTC is not intended to represent a consensus
view of what the connectionist approach is or should be.

lt will perhaps enhance the clarity of the article if I
attempt at the outset to make my position' clear on the
present value of connectionist models and their future
potential. This article is not intended a"s a defense of all
these views, though I will argue for a number of them,
and the remainder have undoubtedly influenccd the
presentation. On the one hand, I believe that:

(1) a. It is far from clear whether connectioni~t models have
adequate computational power to perform high-Ievcl
cognitive tasks: There are serious ob~taclcs tbat must be
overcomc before connectionist L'OlUputation can offer
modelers power comparable to that of symbolic
computation,

b. It is far from dear that connectionist models offer a
sound basis for modeling human cognitivc performance:
The connectionist approach is quite difficult to put into
detailed contact with empirical methodologies.

c. It i~ far from clear that l'onnectionist model~ can contrib
ute to the study of human competence: Connectionist
models arc quite difficult to analyze for the kind of high
level properties required to inform the study of human
competence,

d. It is far from clear that conncctionist models, in some
thing like their present forms, can oHer a sound basis for
modeling neural computation: As will be explicitly ad
dressed in Section 4, there are many serious gaps
betwecn connectionist models and current views of
impOitant neural properties,

e. Even under the most successful scenario for ('Onnec
tionist cognitive !icience, many of thc currently prac
ticed rcsearch strategies in cognitive science would
remain viable and productivc,

On the other haud, I believe that:

(1) f. It is very likely that the connectionist approach will
contribute significant, long-lasting ideas to the rather
impoverished theoretical rcpertoire of cognitive
sciencc.



g. It is very likely that conneetionistmodels will tum out to
offer contributions to the modeling of human cognitive
performance on higher-level tasks that are at least as
significant as those offered by traditional, symbolic,
models.

h. It is likely that the vicwofthe competence/perfonnance
distinction that arises· from the connectionist approach
will successfully heal a deep and ancient rift in the
science and philosophy of mind.

1. It is likely that filnncctionist models will offer the most
significant progress of the past several millenia on thc
mind/body problem.

j. It is very likely that, given the impoverished theoretical
repertoire of computational neuroscience, connec
tionist models win serve as an excellent stimulus 'to the
development of models of neural computation that are
significantly better than both current connectionist
models and current neural models.

k. There is a reasonable chance that connectionist models
will lead to the development ofnew somewhat-general
purpose self-programming, massively parallel analog
computers, and a new theory of analog parallel film
putation: They may possibly even challenge the strong
construal ofChurch's Thesis as the claim that the class of
well-defined computations is exhausted by those of
Turing machines.

1.3. Levels of analysis. Most of the foundational issues
surrounding the connectionist approach turn, in one way
or another, on the level ofanaly~is adopted. The terrni
nology, graphics. and discussion found in most connec
tionist papers strongly suggest that connectionist model
ing operates at the neural level. I will argue, however,
that it is better not to construe the principles ofcognition
being explored in the connectionist approach as the
principles of the neural level. Specification of the level of
cognitive analysis adopted hy ITC is a subtle matter
which consumes much of this article. To be sure, the level
of analysis adopted hy ITC is lower than that of the
traditional, symbolic paradigm; but, at least for the prc
sent, the level of ITC is more explicitly related to the
level of the symbolic paradigm than it is to the neural
level. For this reason I will call the paradigm for cognitive
modeling proposed by ITC the subsymbolic paradigm.

A few comments on terminology. I will refer to the
traditional approach to cognitive modeling as the sym
bolic paradigm. Note that I will always use the term
"symbolic paradigm" to refer to the traditional approach
to cognitive modeling: the development of AI-like com
puter programs to serve as models of psychological per
formance. The symbolic paradigm in cognitive modeling
has been articulated and defended by Newell and Simon
(1976; Newell 1980), as well as by Fodor (1975; 1987),
Pylysbyn (1984), and others. The fundamental hypoth
eses of this paradigm embrace most ofmainstream AI, in
addition to AI-based systems that are explicitly offered as
models ofhuman performance. The term "symbolic para
digm" is explicitly not intended to encompass compe
tence theories such as the formal theory ofgrammar; such
competence theories bear deep relations to the symbolic
paradigm but they are not a focus of attention in this
paper. In particular, much of the work in formal lin
guistics differs from the symbolic paradigm in cognitive
modeling in many of the same ways as the connectionist
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approach I will consider; on a number ofthe dimensions I
will ose to divide the symbolic and subsymbolic para
digms, much linguistics research falls on the subsymbolic
side.

I have found it necessary to deal only with a subset of
the symbolic and connectionist approaches in order to get
beyond superficial, syntactic issues. On the symbolic
side, I am limiting consideration to the Newell/ Simon
/Fodor/Pylyshyn view of cognition, and excluding, lor
example, the view adopted by much oflinguistics; on the
connectionist side, I ",ill consider only a particular view,
the "subsymbolic paradigm," and exclude a number of
competing connectionist perspectives. The only alter
native I see at this point is to characterize the symbolic
and connectionist perspectives so diffusely that substan
tive analysis becomes impossible.

In calling the traditional approach to cognitive model
ing the "symbolic paradigm," I intend to emphasize that
in this approach, cognitive descriptions are built of en
tities that are symbols both in the semantic sense of
referring to external objects and in the syntactic sense of
being operated upon by symbol manipulation. These
manipulations model hIndamental psychological pro
cesses in this approach to cognitive modeling.

The name "subsymbolic paradigm" is intended to sug
gest cognitive descriptions built up of entities that corre
spond to constituents ofthe symbols used in the symbolic
paradigm; these fine-grained constituents could be called
subsymbols, and they are the activities of inclividual
processing units in connectionist networks. Entities that
are typically represented in the symbolic paradigm by
symbols are typically represented in the subsymbolic
paradigm by a large number of subsymbols. Along with
this semantic distinction comes a syntactic distinction.
Subsymbols are not operated upon by symbol manipula
tion: They participate in numerical - not symbolic 
computation. Operations in the symbolic paradigm that
consist of a single discrete operation (e.g., a memory
fetch) are often achieved in the subsymbolic paradigm as
the result of a large number of much finer-grained (nu
merical) operations.

Since the level of cognitive analysis adopted by the
subsymbolic paradigm for formulating connectionist
models is lower than the level traditionally adopted by
the symbolic paradigm, for the purposes of relating these
two paradigms, it is often important to analyze connec
tionist models at a higher level; to amalgamate, so to
speak, the subsymbols into symbols. Although the sym
bolic and subsymbolic paradigms each have their pre
ferred level of analysis, the cognitive models they offer
can be described at multiple levels. It is therefore useh.l
to have distinct names for the levels: I will call the
preferred level of the symbolic paradigm the conceptual
level and that of the subsymbolic paradigm the subcon
ceptual level. These names are not ideal, but will be
further motivated in the course of characterizing the
levels. A primary goal of this article is to articulate a
coherent set ofhypotheses about the subconceptnallevel:
the kind of cognitive descriptions that are used, the
computational principles that apply, and the relations
between the suboonceptual and both the symbolic and
neural levels.

The choice of level greatly constrains the appropriate
formalism for analysis. Probably the most striking feature

BEHAVIORAL AND BRAIN SCIENCES (1988) 11:1 3



SnlOlensky: Proper treatment of cmmectionism

of the connectionist approach is the change in formalism
relative to the symbolic paradigm. Since the birth of
cognitive science, language has provided the dominant
theoretical model. Formal cognitive models have taken
their structure from the syntax of formal languages, and
their content from the semantics ofnatural language. The
mind has been taken to be a machine for formal symbol
manipulation, and the symbols manipulated have as
sumed essentially the same semantics as words of
English.

The subsymbolic paradigm challenges both the syntac
tic and semantic role of language in formal cognitive
models. Section 2 formulates this challenge. Altemative
fillers are described for the roles language has tradi
tionally played in cognitive science, and the new role left
to language is delimited. The fundamental hypotheses
defining the subsymbolic paradigm are formulated, and
the challenge that nothing new is being offered is L'onsid
ered. Section 4 considers the relation between the suh
symbolic paradigm and neuroscience; the challenge that
connectionist models are too neurally unfaithful is ad
dressed. Section 5 presents the relations between analy
ses ofcognition at the neural, subconceptual, and concep
tuallevels. It also previews the remainder of the article,
which deals with the relations between the subconcep
tual and conceptual levels; the types of explanations of
behavior provided by the symbolic and subsymbolic
paradigms are then discussed. Section 6 faces the chal
lenge of accounting for conscious, rule-guided behavior
within the subsymbolic paradigm. Section 7 addresses
the challenge of distinguishing cognitive frOIn noncog
nitive systems at the subconceptuallevel. Various prop
erties of subsymbolic mental states, and the issue of
rationality, are considered. Section 8 elaborates hriefly
on the computational principles that apply at the su bcon
ceptual level. Section 9 discusses how higher, concep
tual-level descriptions of subsymbolic models approxi
mate symbolic models (under their conceptual-level
descriptions).

In this target article I have tried to typographically
isolate concise formulations of the main points. Most of
these numbered points serve to characterize the subsym
bolic paradigm, but a few define alternative points of
view; to avoid confusion, the latter have been explicitly
tagged by the phrase, To be rejected.

2. Formalization of knowledge

2.1. Cultural knowledge and conscious rule interpreta
tion.What is an appropriate formalization of the knowl
edge that cognitive agents possess and the means by
which they use that knowledge to perform cognitive
tasks? As a starting point, we can look to those Imowledge
formalizations that predate cognitive science. The most
formalized knowledge is found in sciences like physics
that rest on mathematical principles. Domain knowledge
is fonnalized in linguistic structures such as "energy is
conserved" (or an appropriate encryption), and logic
formalizes the use of that knowledge to draw conclusions.
Knowledge consists of axioms, and drawing conclusions
consists of proving theorems.
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This method of formulating knowledge and drawing
conclusions has extremely valuahle properties:

(2) a. Public access: The knowledge is accessible to many
people.

b. Reliability: Different people (or the same person at
different times) can reliably check whether conclusions
have been validly reached.

c. Formality, bootstrapping, universality: The inferential
operations require very little experience with the do
Dlain to which the symbols refer.

These three properties are important for science because
it is a cultural activity. It is of limited social value to have
knowledge that resides purely in one individual (2a). It is
of questionable social value to have knowledge formu
lated in such a way that different users draw different
conclusions (e.g., can't agree that an experiment falsifies a
theory) (2b). For cultural propagation of knowledge, it is
helpful if novices with little or no experience with a task
can be given a meilllS for performing that task, and
thereby a means for acquiring experience (2c).

There are cultural 'activities other than science that
have similar requirements. The laws of a nation and the
rules of an organization are also linguistically formalized
procedures for effecting action which different people can
carry out with reasonable reliability. In all these cases,
the goal is to create an abstract decision system that
resides outside any single person.

Thus, at the cultural level, the goal is to express
knowledge in a form that can be executed reliably by
different people, even inexperienced ones. We can view
the top-level conscious processor ofindividual people as a
virtual machine - the conscious rule interpreter - and we
can view cultural knowledge as a program that runs on
that machine. Linguistic formulations of knowledge are
peliect for this purpose. The procedures that different
people can reHably execute are explicit, step-by-step
linguistic instructions. This is what has been formalized in
the theory of effective procedures (Turing 1936). Thanks
to property (2c) the top-level conscious human processor
can be idealized as universal: capable of executing any
effective procedure. The theory ofeffective procedures 
the classical theory of computation (Hopcroft & Ullman,
1979) - is physically manifest in the von Neumann (serial)
computer. One can say that the von Neumann computer
is a machine for automatically following the kinds of
explicit instructions that people can fairly reliably follow
but much faster and with peliect reliability.

Thus we can understand why the production system of
computation theory, or more generally the von Neumann
computer, has provided a successful model ofhow people
execute instructions (e. g., models ofnovice physics prob
lem solving such as that of Larkin et aJ. 1980). In short,
when people (e. g., novices) consciously and sequentially
follow rules (such as those they have been taught), their
cognitive processing is naturally modeled as the sequen
tial interpretation l of a linguistically formalized pro
cedure. The rules being followed are expressed in terms
ofthe consciously accessible concepts with which the task
domain is conceptualized. In this s'ense, the rules are
formulated at the conceptual level of analysis.

To sum up:

(3) a. Rules formulated in natural language can provide an
effective fonnalization of cultural knowledge.



b. Conscious rule application can be modeled as the se
quential interpretation of such rules by a virtual ma
chine called the conscious rule interpreter.

c. These rules are formulated in terms of the concepts
consciously used to describe the task domain - they are
furmulated at the conceptual level.

2.2. Individual knowledge, skill, and intuition in the symbolic
paradigm. The constraints on cultural knowledge for
malization are not the same as those on individual knowl
edge formalization. The intuitive knowledge in a physics
expert or a native speaker may demand, for a truly
accurate description, a formalism that is not a good one for
cultural purposes. After all, the individual knowledge in
an expert's head does not pnssess the properties (2) of
cultural knowledge: It is nnt publically accessible or
completely reliable, and it is completely dependent on
ample experience. Individual knowledge is a program
that 11..IOS on a virtual machine that need not be the same
as the top-level conscious processor that runs the cultural
knowledge. By definition, conclusions reached by intui
tion do not come from conscious application of rules, and
intuitive processing need not have the same character as
conscious rule application.

What kinds of programs are responsible for behavior
that is not conscious rule application? I will refer to the
virtual machine that runs these programs as the intuitive
processor. It is presumably responsible for all of animal
behavior and a huge portion ofhuman behavior: Percep
tion, practiced motor behavior, fluent linguistic behav
ior, intuition in problem solving and game playing - in
short, practically all skilled performance. The trans
ference of responsibility from the conscious rule inter
preter to the intuitive processor during the acquisition of
skill is one of the most striking and well-studied phe
nomena in cognitive science (Anderson 1981). An analysis
ofthe formalization ofknowledge must consider both the
knowledge involved in novices' conscious application of
rules and the knowledge resident in experts' intuition, as
well as their relationship.

An appealing possibility is this:

(4) a. The programs running on the intuitive proce!isorconsist
of linguistically formalized rules that are sequentially
interpreted. (To he rejected.)

This has traditionally been the assumption of cognitive
science. Native speakers are unconsciously interpreting
rules, as are physics experts when they are intuiting
answers to problems. Artificial intelJigence systems for
natural language processing and problem solving are
programs written in a formal language for the symbolic
description of procedures for manipulating symbols.

To the syntactic hypothesis (4a) a semantic one corre
sponds:

(4) b. The programs running on the intuitive processor are
composed of elements, that is, symbols, referring to
essentially the same concepts as the ones used to con
sciously conceptualize the task domain. (To be 1"e.iected.)

This applies to production system models in which the
productions representing expert knowledge are compiled
versions of those of the novice (Anderson 1983; Lewis
1978) and to the bulk nf Al programs.
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Hypotheses (4a) and (4b) together comprise:

(4) The unconscious mle interpretation hypothesis: (To be
rejected.)
The programs running on the intuitive processor have a
syntax and semantics comparable to those running on
the conscious rule interpreter.

This hypothesis has provided the foundation for the
symbolic paradigm for cognitive modeling. Cognitive
models of both conscious rule application and intuitive
processing have been programs constructed of entities
which are symbols both in tbe syntactic sense of being
operated on by symbol manipulation and in the semantic
sense of(4b). Because these symbols have the conceptual
semantics of (4b), I am calling the level of analysis at
which these programs provide cognitive models the con
ceptual level.

2.3. The subsymbolic paradigm and intuition. The bypotb
esis of unconscious rule interpretation (4) is an attractive
possibility which a connectionist appro~ch to cognitive
modeling rejects. Since my purpose here is to formulate
rather than argue the scientific merits of a connectionist
approach, I will not argue against (4) here. I will point out
only that in general. connectionists do not casually reject
(4). Several of today's leading connectionist researchers
were intimately involved with serious and longstanding
attempts to make (4) serve the needs of cognitive sci
ence. 2 Connectionists tend to reject (4) because they find
the consequences that have actually resulted from its
acceptance to be quite unsatisfactory, for a number of
quite independent reasons, including:

(5) a. Actual AI systems built on hypothesis (4) seem too
brittle, too inflexible, to model true human expertise.

b. The process of articulating expert knowledge in rules
seems impractical for many important domains (e.g.,
common sense).

c. Hypothesis (4) has contributed essentially no insight
into how knowledge is represented in the brain.

What motivates the pursuit of connectionist alternatives
to (4) is a hunch that such alternatives will better serve the
goals of cognitive science. Substantial empirical assess
ment ofthis hunch is probably at least a decade away. One
possible alternative to (4a) is:

(6) The neural architecture hypothesis: (To be rejected.)
The intuitive processor fOr a particular task uses the
same architecture that the brain uses for that task.

Whatever appeal this hypothesis might have, it seems
incapable in practice of supporting the needs of the vast
majority of cognitive models. We simply do not know
what architecture the brain uses for perlonning most
cognitive tasks. There may be some exceptions (such as
visual and spatial tasks), but for problem solving, lan
guage, and many others (6) simply cannot do the neces
sary work at the present time.

These points and others relating to the neural level will
be considered in more detail in Section 4. For now the
point is simply that characterizing the level of analysis of
connectionist modeling is not a matter ofsimply identify
ing it with the neural level. While the level of analysis
adopted by most connectionist cognitive models is not the
conceptual one, it is also not the neural level. [See also
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Anderson: "Methodologies for Studying Human Knowl
edge" BBS 10(3) 1987.]

The goal nOW is to furmulate a connectionist alternative
to (4) that, unlike (6), provides a viable basis for cognitive
modeling. A first, crude approximation to this hypothesis
is:

(7) The intuitive processor has a certain kind of COnnec
tionist architecture (which abstractly models a few ofthe
most general features of neural networks). (To be
elaborated. )

Postponing consideration of the neural issues to Section
4, we now consider the relevant kind of connectionist
architecture.

The view of the connectionist architecture I will adopt
is the following (for further treatment of this viewpoint,
see Smolensky 1986b). The numerical activity values of
all the processors in the network funn a large state vector.
The interactions of the processors, the equations govern
ing how the activity vector changes over time as pro
cessors respond to one another's values, is an activation
evolution equation. This evolution equation governing
the mutual interactions of the processors involves the
connection weights: numerical parameters which deter
mine the direction and magnitude ofthe influence of one
actiyation value on another. The activation equation is a
differential equation (usually approximated by the fmite
difference equation that arises from discrete time slices;
the issue of discrete approximation is taken up in Section
8.1). In learning systems, the connection weights change
during training according to the leanling rule, which is
another differential equation: the connection evolution
equation.

Knowledge in a connectionist system lies in its connec
tion strengths. Thus, for the first part of our elaboration
on (7) we have the following alternative to (4a):

(8) a. The connectionist dynamical system hypothesis:
The state of the intuitive processor at any moment is
precisely defined by a vector of numerical values (one
for each unit). The dynamics of the intuitive processor
are governed by a differential equation. The numerical
parameters in this equation constitute the processor's
program or knowledge. In learning systems, these pa
rameters change according to another differential
equation.

This hypothesis states that the intuitive processor is a
certain kind of dynamical system: Like the dynamical
systems traditionally studied in physics, the state of the
system is a numerical vector evolving in time according to
differential evolution equations. The special properties
that distinguish this kind of dynamical system - a COnnec
tionist dynamical system, - are only vaguely described in
(8a). A much more precise speciBcation is needed. It is
premature at this point to commit oneself to such a
specification, but one large class ofsubsymbolic models is
that of quasilinear dynamical systems, explicitly dis
cussed in Smolensky (1986b) and Rumelhart, Hinton, and
Williams (1986). Each unit in a quasilinear system com
putes its value by first calculating the weighted sum olits
inputs from other units and then transforming this sum
with a nonlinear function. An important goal of the
s~bsymbolic paradigm is to characterize the computa
tIonal properties ofvarious kinds ofconnectionist dynam-

ical systems (such as quasilinear systems) and thereby
determine which kinds provide appropriate models of
various types of cognitive processes.

The connectionist dynamical system hypothesis (8a)
provides a connectionist alternative to the syntactic hy
pothesis (4a) of tbe symbolic paradigm. We now need a
semantic hypothesis compatible with (8a) to replace (4b).
The question is: What does a unit's value mean? The most
straightfOrward possibility is that the semantics of each
unit is comparable to that of a word in natural language;
each unit represents such a concept, and the connection
strengths between units reflect the degree of association
between the concepts.

(9) The conceptual unit hypothesis: (To be rejected.)
hldividual intuitive processor elements - individual
units - have essentially the same sem<U.ltics as the
conscious rule interpreter's elements, namely, words of
natural language.

But (8a) and (9) make an infertile couple. Activation of
concepts spreading along degree of association links may
be adequate for modeling simple aspects of cognition 
such as relative times for naming words or the relative
probabilities of perceiving letters in various contexts 
but it cannot be adequate fur complex tasks such as
question answering or grammaticality judgments. The
relevant sttuctures cannot even be feasibly represented
in such a network, let alone effectively processed.

Great computational power must be present in the
intuitive processor to deal Witll the many cognitive pro
cesses tllat are extremely complex when described at the
conceptual level. The symbolic paradigm, based on hy
pothesis (4), gets its power by allowing highly complex,
essentially arbitrary, operations on symbols with concep
tual-level semantics: simple semantics, complex opera
tions. If the operations are required to be as simple as
those allowed by hypothesis (8a), we cannot get away with
a semantics as simple as that of (9). 3 A semantics compati
ble with (8a) must be more complicated:

(8) b. The subconceptual unit hypothesis:
The entities in the intuitive processor with the seman
tics of conscious concepts of the task domain are com
plex patterns of activity over many units. Each unit
participates in many such patterns.

(See several of the papers in Hinton & Anderson 1981;
Hinton, McClelland & Rumelhart 1986; the neural coun
terpart is associated with Hebb 1949; Lashley 1950, about
which see Feldman 1986.) The interactions between
individual units are simple, but these units do not have
conceptual semantics: they are subconceptual. The in
teractions between the entities with conceptual seman

. tics, interactions between complex patterns of activity,
are not at all simple. Interactions at the level of activity
patterns are not directly described by the fonnal defini
tion of a subsymbolic model; tlleY must be computed by
the analyst. Typically, tllese interactions can be com
puted only approximately. In otller words, tI,ere will
generally be no precisely valid, complete, computable
formal principles at the conceptual level; such principles
exist only at tlle level ofindividual units - the subconcep
tuallevel.

(8) c. The subconceptual level hypothesis:
. CODlplete, formal, and precise descriptions of the intu-
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itive processor are generally tractable not at the concep
tuallevel, but only at the subconceptuallevcl.

In (Bc), the qualification "complete, formal, and precise"
is important: Conceptual-level descriptions of the intu
itive processor's performance can be derived from the
subconceptual description, but, unlike the description at
the subconceptual level, the conceptual-level descrip
tions will be either incomplete (describing ooly certain
aspects ofthe processing) Or informal (describing complex
behaviors in, say, qualitative terms) or imprecise (de
scribing the performance up to certain approximations or
idealizations such ao:; "competence" idealizations away.
from actual performance). Explicit examples of each of
these kinds of conceptual-level descriptions of subsym
bolic systems will be considered in Section 9.

Hypotheses (Ba~c) can be summarized as:

(B) The subsymbolic hypothesis:
The intuitive processor is a subconceptual connectionist
dynamical system that does not admit a complete, for
mal, and precise conceptual-level description.

This hypothesis is the cornerstone of the subsymbolic
paradigm 4

2.4. The incompatibility of the symbolic and subsymbolic
paradigms. I will now show that the symbolic and subsym
bolic paradigms, as formulated above, are incompatible
that hypotheses (4) and (B) about the syntax and semantics
of the intuitive processor are not mutually consistent.
This issue requires care, because it is well known that one
virtual machine can often be implemented in another,
that a program written for one machine can be translated
into a program for the other. The attempt to distinguish
subsymbolic and symbolic computation might well be
futile if each can simulate the other. After all, a digital
computer is in reality some sort of dynamical system
simulating a von Neumann automaton, and in turn,
digital computers are usually used to simulate connec
tionist models. Thus it seems possible that the symbolic
and subsymbolic hypotheses (4) and (8) are both correct:
The intuitive processor can be regarded as a virtual
machine for sequentially interpreting rules on one level
and as a connectionist machine on a lower level.

This possibility fits comfurtably within the symbolic
paradigm, under a formulation such as:
(10) Valid connectionist models are merely implementa

tions, for a certain kind of parallel hardware, of sym
bolic programs that provide exact and complete
accounts of behavior at the conceptual level. (To be
rejected.)

However (10) contradicts hypothesis (8c), and is thus
incompatible with the subsymbolic paradigm. The sym
bolic programs that (4) hypothesizes for the intuitive
processor could indeed be translated for a connectionist
machine; but the translated programs would not be the
kind of subsymbolic program that (8) hypothesizes. If(10)
is correct, (B) is wrong; at the very least, (8c) would have to
be removed from the defining hypothesis of the subsym
bolic paradigm, weakening it to the point that connec
tionist modeling does become mere implementation.
Such an outcome would constitute a genuine defeat of a
research program that I believe many connectionists are
pursuing.

Smolensky: Proper treatment of connectionism

What about the reverse relationship, where a sym bolic
program is used to implement a subsymboIic system?
Here it is cnlCial to realize that the sym boIs in such
programs represent the activation values of units and the
strengths ofconnections. By hypothesis (8b), these do not
have conceptual semantics, and thus hypothesis (4b) is
violated. The subsymbolic programs that (8) hypothesizes
for the intuitive processor can be translated for a Von
Neumann machine, but the translated programs are not
the kind of symbolic program that (4) hypothesizes.

These arguments show that unless the hypotheses of
the symbolic and subsymbolic paradigms are formulated
with some care, the substance of the scientific issue at
stake Can easily be missed. It is well known that von
Neumann machines and connectionist networks can sim
ulate each other. This fact leads some people to adopt the
position that the connectionist approach cannot offer
anything fundamentally new because we already have
Turing machines and, following Church's Thesis, reason
to believe that, when it comes to computation, Turing
machines are everything. This position, however, mis
takes the issue for cognitive science to be the purely
syntactic question of whether mental programs are writ
ten for Turing/von Neumann machines or connectionist
machines. This is a nonissue. If one cavalierly charac
terizes the two approaches only syntactically, using (4a)
and (8a) alone, then indeed the issue - connectionist or
not connectionist - appears to be "one of AI's wonderful
red herrings."5

It is a mistake to claim that the connectionist approach
l~as nothing new to offer cognitive science. The issue at
stake is a central one: Does the complete formal account
ofcognition lie at the conceptual level? The positiou taken
by the subsymbolic paradigm is: No- it lies at the
subconceptual level.

3. Representation at the sUbconceptual level

Having hypothesized the existence of a subconceptual
level, we must now consider its nature. Hypothesis (8b)
leaves open important questions about the semantics of
subsymbolic systems. What kind of subconceptual fea
tures do the units in the intuitive processor represent?
Which activity patterns actually correspond to particular
concepts or elements of the problem domain?

There are no systematic or general answers to these
questions at the present time; seeking answers is One of
the principal tasks for the subsymbolic research para
digm. At present, each individual subsymbolic model
adopts particular procedures for relating patterns of ac
tivity - activity vectors - to the conceptual-level descrip
tions of inputs and outputs that define the model's task.
The vectors chosen are often values of fine-grained fea
tures of the inputs and outputs, based on some preexist
ing theoretical analysis of the domain. For example, for
the task stndied by Rumelhart and McClelland (1986),
b'ansforming root phoneticforms ofEnglish verbs to their
past-tense fOlms, the input and output phonetic strings
are represented as vectors of values for context-depen
dent binary phonetic features. The task description at the
conceptual level involves consciously available concepts
such as the words "go" and "went," while the subconcep
tuallevel used by the model involves a very large number
of fine-grained features such as "roundedness preceded
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by frontalness and followed by backness." The represen
tation of "go" is a large pattern of activity over these
features.

Substantive progress in subsymbolic cognitive science
requires that systematic commitments be made to vec
torial representations for individual cognitive domains. It
is important to develop mathematical or empiricalmeth
odologies that can adequately constrain these commit
ments. TIle vectors chosen to represent inputs and out
puts crucially affect a model's predictions, since the
generalizations the model makes are largely determined
by the similarity stnlcture of the chosen vectors. Unlike
symbolic tokens, these vectors lie in a topological space in
which some are close together and others far apart.

What kinds of methodologies might he used to con
strain the representation at the subconceptuallevel? The
methodology used by Rumelhart and McClelland (1986)
in the past-tense model is one that has been fairly widely
practiced, particularly in models of language processing:
Representational features are borrowed from existing
theoretical analyses ofthe domain and adapted (generally
in somewhat ad hoc ways) to meet the needs of connec
tionist modeliug. nlis methodology clearly renders the
subsymbolic approach dependent on other researcll para
digms in the cognitive sciences and suggests that, cer
tainly in the short term, the subsymbolic paradigm can
not replace these other research paradigms. (This is a
theme I will return to in the conclusion of the paper.)

A second possible theoretical methodology for study
ing subconceptual representation relates to the learning
procedures that can train hidden units in connectionist
networks. Hidden units support internal representations
of elements of the problem domain, aud networks that
train their hidden units are in effect learning effective
subconceptual representations of the domain. If we can
analyze the represelitations that such networks develop,
we can perhaps obtain principles of subconceptual repre
sentation for various problem domains.

A third class of methodology views the task of con
straining subconceptual models as the calibration ofcon
nectionist models to the human cognitive system. The
problem is to determine what vectors should be assigned
to represent various aspects of the domain so that the
resulting behavior of the connectionist model matches
human behavior. Powerful mathematical tools are
needed for relating the overall behavior ofthe network to
the choice of representational vectors; ideally, these tools
should allow us to invert the mapping from representa
tions to behavior so that by starting with a mass ofdata 011

human perfurmance we can turn a mathematical crank
and have representational vectors pop out. An example of
tbis general type of tool is the technique ofmultidimen
sional scaling (Shepard 1962), which allows data on
human judgments ofthe similarity between pairs ofitemS
in some set to be turned into vectors for representing
those items (in a sense). The subsymbolic paradigm needs
tools such as a version of multidimensional scaling based
on a connectionist model of the process of producing
similarity judgments.

Each of these methodologies poses serious research
cballenges. Most of tbese challenges are currently being
pursued, so fur with at best modest success. In the Hrst
approach, systematic principles must be developed for
adapting to the connectionist context the featural analyses
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of domains that have emerged from traditional, noncon
nectiollist paradigms. These pdnciples must reflect fun
damental properties of connectionist computation, for
otherwise, the hypothesis ofconnectionist computation is
doing no work in the study of mental representation. In
the second metbodology, principles must be discovered
for the representations learned by hidden units, and in
the tllird methodology, priuciples must be worked out for
relating choices of representational vectors to overall
system behavior. TIlCse are challenging mathematical
problems on which the ultimate success of the subsym
bolie paradigm rests. Sections 8 and 9 discuss some
results related to these mathematical problems, but tlleY
are far from strong enough to carry the necessary weight.

The next two sections discuss the relation between the
subconceptuallevel and other levels: The relation to the
neural levels is addressed in Section 4, and the relation to
the conceptual level is taken up in Section 5.

4. The subconceptual and neural levels

The discussion in the preceding section overlooks an
obvious methodology for constraining subconceptual rep
resentations - just look at how the brain does it. This
brings us back to the parenthetical comment in (7) and the
general issue of the relation between the subconceptual
and neural levels.6

The relation betweeu tbe subconceptual and neural
levels can be addressed in both syntactic and semantic
terms. The semantic question is the one just raised: How
do representations of cognitive domains as patterns of
activity over subconceptual units in the network models
of the subsymbolic paradigm relate to representations
over neurons in the brain? The syntactic question is: How
does the processing arclliteclure adopted by networks in
the subsymbolic paradigm relate to the processing arcbi
tecture of the brain?

There is not really much to say about the semantic
question because so little is known about neural repre
sentation ofhigher cognitive domains. When it comes to
connectionist modeling of say, language processing, the
"just look at how the brain does it" methodology doesn't
take one very far towards the goal of constructing a
network tllat does tlle task at all. Thus it is unavoidable
that, for the time being, in subsymbolic models ofhigher
processes, the semantics of network units are much more
directly related to conceptual level accounts of these
processes than to any neural account. Semantically, the
subconceptuallevel seems at present rather close to the
conceptual level, while we bave little ground for believ
ing it to be close to the neural level.
. This conclusion is at odds with the commonly held view
that conuectionist models are neural models. That view
presumably reflects a bias against semantic considera
tions in favor of syntactic ones. If one looks only at
processing mechanisms, the computation pmformed by
subsymbolic models seems much closer to that of the
brain tlIan to that of symbolic models. This suggests that
syntactically, the subconceptual level is closer to the
neural level than to the conceptual level.

Let us take then the syntactic question: Is the process
ing architecture adopted by subsymbolic models (8a)
well-suited for describing processing at the neural level?



State defined by contill11011S + State defined by continuous
numerical variables (poten- numerical variables (act iva-
tiaIs, synaptic areas, . . .) lions, connection strengths)

State variables change con- + State variables change con-
tinuously in time tinuously in time

Interneuron interaction pa- + Intenmit interaction para-
rameters changeable; seat of meters changeable; seat of
knowledge knowledge

Huge number of state vari- + Large number of state
abies variables

High interactional complex- + High interactional complex-
ity (highly nonhomogeneous ity (highly nonhomogeneous
interactions) interactions)

Table 1 presents some of the relations between the
architectures. The left column lists currently plausible
features ofsome of the most general aspects of the neural
architecture, considered at the level of neurons (Crick &
Asanuma 1986). The right column lists the corresponding
architectural features of the connectionist dynamical sys
tems typically used in subsymbolic models. In the center
column, each hit has been indicated by a + and each miss
by a -.

In Table 1 the loose correspondence assumed is be
tween neurons and units, between synapses and connec
tions. It is not clear how to make this correspondence
precise. Does the activity of a unit correspond to the·
membrane potential at the cell body? Or the time-aver
aged firing rate of the neuron? Or the population-aver
aged firing rate of many neurons? Since the integration of
signals between dendritic trees is probably more like the
linear integration appearing in qllasilinear dynamical

Table 1. Rel.ations between the neural
and subsymbolic architectures

- Single signal type

Cerebral cortex

Neurons located in 2+ I-d
space

have dense connectivity
to nearby neurons;

have geometrically
mapped connectivity to
distant neuronS

Synapses located in 3-d
space;

locations strongly affect
signal interactions

Distal projections between
areas have intricate topol
ogy

Distal interactions mediated
by discrete signals

Intricate signal integration' ~

at single neuron

Numerolls signal types

Connectionist dynamical
systems

Units have no spatial location

unifonnly dense

connections

Connections have no spatial
location

Distal projections between
node pools have simple to
pology

All interactions nondiscrete

Signal integration is linear

Smolensky: Proper treatment of connectionism

systems than is the integration of synaptic signals on a
dendrite, would it not be better to view a connection not
as an individual synaptic contact but rather as an aggre
gate contact on an entire dendritic tree?

Given the difficulty of precisely stating the neural
counterpart of components of subsymbolic models, and
given the significant number of misses, even in the very
general properties considered in Table 1, it seems advis
able to keep the question open of the detailed relation
between cognitive descriptions at the subconceptual and
neural levels. There seems no denying, however, that the
subconceptual level is Significantly closer to the neural
level than is the conceptual level: Symbolic models pos
sess even fewer simibrities with the brain than those
indicated in Table 1.

The subconceptual level ignores a great number of
features of the neural level that are probably extremely
important to understanding how the brain computes.
Nonetheless, the subconceptuallevel does incorporate a
number offeatures of neural computation that are almost
certainly extremely important to understanding how the
brain computes. The general principles ofcomputation at
the subconceptual level - computation in high-dimen
sional, high-complexity dynamical systems - must apply
to computation in the brain; these principles are likely to
be necessary, if not sufficient, to understand neural
computation. And while subconceptual principles are not
unambiguously and immediately applicable to neural
systems, they are certainly mOre readily applicahle than
the principles of symbolic computation.

In sum:

(11) The fundamental level of the subsymbolic paradigm,
the subconceptual level, lies between the nelrral and
conceptual levels.

As stated earlier, on semantic measures, the subsymbolic
level seems closer to the conceptual level, whereas on
syntactic measures, it seems closer to the neural level. It
remains to be seen whether, as the subsymbolic paradigm
develops, this situation will sort itself out. Mathematical
techniques like those discussed in the previous section
may yield insights into subsymbolic representation that
will increase the semantic distance between the subcon
ceptual and conceptllallevels. There are already signifi
cant indications that as new insights into subsymbolic
computation are emerging, and additional information
processing power is being added to subsymbolic models,
the syntactic distance between the subconceptual and
neural levels is increasing. In the drive for more computa
tional power, architectural decisions seem to be driven
more and more by mathematical considerations and less
and less by neural ones. 7

Once (11) is accepted, the proper place ofsubsymbolic
models in cognitive science will be clarified. It is common
to hear dismissals of a particular subsymbolic model
because it is not immediately apparent how to implement
it precisely in neural hardware, or because certain neural
features are absent from the model. We can now identifY
two fallacies in such a dismissal. First, follOWing (11):
Subsymbolic models should not be viewed as neural
models. If the subsymbolic paradigm proves valid, the
best subsymbolic models of a cognitive process should
one day be shown to be some reasonable higher-level
approximation to the neural system supporting that pro-
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cess. This provides a heuristic that favors subsymbolic
models that seem more likely to be reducible to the
neural level. But this heuristic is an extremely weak one
given how difficult such a judgment must be with the
current confusion about the precise neural correlates of
units and connections, and the current state of both
empirical and theoretical neuroscience.

The second fallacy in dismissing a particular subsym
bolic model because of neural unfaithfulness rests on a
failure to recognize the role of individual models in the
subsymbolic paradigm. A model can make a valuable
contribution by providing evidence for general principles
that are characteIistic of a broad class of subsymbolic
systems. The potential value of «ablation" studies of the
NETtalk text-to-speech system (Sejnowski & Rosenberg
1986), for example, does not depend entirely on the
neural faithfulness ofthe model, or even on its psycholog
ical taithfi.llness. NETtalk is a subsymbolic system that
performs a complex task. What bappens to its perfor
mance when internal parts are damaged? This provides a
significant clue to the general principles ofdegradation in
all complex subsymbolic systems: Principles that will
apply to future systems that are more faithful as models.

There are, of course, many neural models that do take
many of the constraints of neural organization seriously,
and for which the analogue ofTable 1 would show nearly
all hits. But we are concerned here with connectionist
models for performing cognitive tasks, and these models
typically possess the features displayed in Table 1, with
perhaps one or two deviations. The claim is not that
neural models don't exist, but rather tbat they should not
be confused with subsymbolic models.

Why is it that neural models ofcognitive processes are,
generally speaking, currently not feasible? The problem
is not all illsufllcient quantity ofdata about the brain. The
problem, it seems, is that the data are generally of the
wrong kind for cognitive modeling. Our information
about the nervous system tends to describe its structure,
not its dynamic behavior. Subsymbolic systems are dy
namical systems with certain kinds of differential equa
tions governing their dynamics. If we knew which dy
namical variables in the neural system for sonle cognitive
task were the critical ones for performing that task, and
what the "equations of motion" were for those variables,
we conld use that information to build neurally faithful
cognitive models. But generally what we know instead
are endless static properties of how the hardware is
arranged. Without knowing which (if any) of tllese struc
tures support relevant dYllamical processes, and what
equations govern those processes, we are in a position
comparable to someone attempting to model tIle solar
system, armed with voluminous data on the colored
bands of the planets but witl, 1I0 knowledge of Newton's
Laws.

To summarize:

(12) a. Unlike the symbolic architecture, the subsymbolic
architecture possesses a number of th~ most general
features of the neural architecture.

b. However, the subsymbolic architecture lacks a
number of the more detailed but still quite general
features of the neural architecture; the subconceptual
level of analysis is lligher than the neural level.

c. For most cognitive functions, neuroscience cannot
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provide the relevant information to specify a cognitive
model at the neural level.

d. The general cognitive principles of the subconccptual
level will probably be important contributors to future
discoveries of those specifications of neural computa
tions that we now lack.

5. Reduction of cognition to the subconceptual
level

The previous section considered the relationship be
tween the fundamental level of tbe subsymbolic para
digm - the subconceptual level ~. and the neural level.
The remaillder of this article will focus on relations
between the subconceptual and conceptual levels; these
have so far only been touched upon briefly (in (8c)).
Before proceeding, however, it is worth summarizing the
relationships between tl,e levels, including tlIOse that will
be discussed in the remainder of the article.

Imagine three physical systems: a brain that is execut
ing some cognitive process, a massively parallel connec
tionist computer running a subsymbolic model of that
process, and a VOll Neumann computer running a sym
bolic Illodel of the same process. The cognitive process
may involve conscious rule application, intuition, or a
combination of the two. According to the subsymholic
paradigm, here are the relationships:

(13) a. Describing the brain at the neural level gives a neural
model.

b. Describing the brain approximately, at a higher level
the subconceptuallevel- yields, to a good approxima
tion, thc model running on the coIDwctionist comput
er, whell it too is described at the subconceptuallevel.
(At this point, this is a goal for future research. It could
turn out that the degree of approximation here is only
rough; thi<; would stilI be consisteut with the subsym
bolic paradigm.)

c. We can try to describe tIle cOlluectionist computer at a
higher level - the conceptual level - by using the
patterns of activity that have conceptual semantics. If
the cognitive process being executed is conscious rule
application, we will be able to carry out this concep
tual-level analysis with reasonable precision, and will
end up with a description that closely matches the
symbolic computer program running on the von Neu
mann machine.

d. If the process being executed is au intuitive process,
we will be unable to carry out the conceptual-level
description of the connectionist 1Iiachine precisely.
Nonetheless, we will be able to produce various ap~

plUximute conceptual-level descriptions that corre
spond to the symbolic computer program ruulliTlg OIl
the von Neumann machine in various ways.

For a cognitive process involving both intuition and
conscious rule application, (13c) and (13d)will each apply
to certain aspects of the process.

The relationships (13a) and (13b) were discussed in tlle
previous section. The relationship (13c) between a sub
symbolic implementation of the conscious rule interpret
er and a symbolic implementation is discussed ill Section
6. The relations (13d) between subsymbolic and symbolic
accounts ofintuitive processing are considered in Section
9. These relations hillge 011 certain subsYlllbolic computa-



Smolensky: Proper treatment of connectionism

Table 2. Three cognitive systems and three levels of description

Cognitive system

(process) BrainLevel

Conceptual

Subconceptual
Neural

(intuition)
(conscious rule a.pplication)

?
?
good approximation
exact

SlibsymboHc

rough approximation
good approximation
exact

=

Symbolic

exact
exact

tional principles operative at the subconceptual level
(13b); these are briefly discussed in Section 8. 'These
principles are of a new kind for cognitive science, giving
rise to the foundational considerations taken up in Section
7.

The relationships in (13) can be more clearly under
stood by reintroducing the concept of "virtual machine ....
If we take one of the three physical systems and describe
its processing at a certain level ofanalysis, we get a virtual
machine that 1 will denote "systemleve'''. Then (13) can be
written:

(14) u. brainncural = neural model
b. brainsubconCCPhIaI = connectionistsuhc_oJlcePhlal
c. connectionistcollceptual = von Neumann,:"nceptual (con

scious rule application)
d. connectionist<;onc<,Ptual Von NeumannCOJlCeptua[

(intuition)

Here, the symbol = means "equals to a good approxima
tion" and - means "equals to a crude approximation."
The two nearly equal virtual machines in (14c) both
describe what I have been calling the "conscious rule
interpreter." The two roughly similar virtual machincs in
(14d) provide the two paradigms' descriptions of the
intuitive processor at the conceptual level.

Table 2 indicates these relationships and also the de
gree of exactness to which each system can be described
at each level - the degree of precision to which each
virtual machine is defined. 'The levels included in Table 2
are those relevant to predicting high-level behavior. Of
course each system can also be described at lower levels,
all the way down to elementary particles. However,
levels below an exactly describable level can be ignored
from the point of view of predicting high-level behavior,
since it is possible (in principle) to do the prediction at the
highest level that can be exactly described (it is presum
ably much harder to do the same at lower levels). This is
why in the symbolic paradigm aoy descriptions below the
conceptual level are not viewed as significant. For model
ing high-level behavior, how the symbol manipulation
happens to be implemented can be ignored - it is not a
relevant part of the cognitive model. In a subsymbolic
model, exact behavioral prediction must be performed at
the subconceptuallevel, but how the units happen to be
implemented is not relevant.

The relation between the conceptual level and lower
levels is fundamentally different in the subsymbolic and
symbolic paradigms. This leads to important differences
in the kind of explanations the paradigms offer of concep
tual-level behavior, and the kind of reduction used in
these explanations. A symbolic model is a system of

interacting processes, all with the same conceptual-level
semantics as the task behaviof bcing explained. Adopting
the terminology of Haugeland (1978), this systerrultic
explanation relies on a systematic reduction ofthe behav
ior that involves no shift of semantic domain or dimen
sion. Thus a game-playing p'rogram is composed of sub
programs that generate possible moves, evaluate them,
and so on. In the symbolic paradigm, these systematic
reductions play the major role in explanation. The lowest
level processes in the systematic reduction, still with the
original scmantics of the task domain, are then them
selves reduced by intentional instantiation: they are
implemented exactly by other processes with different
semantics but the same form. Thus a move-generation
subprogram with game semantics is instantiated in a
system of programs with list-man~ul~ting semantics.
This intentional instantiation typically plays a minor role
in the overall explanation, if indeed it is regarded as a
cognitively relevaot part of the model at all.

Thus cognitive explanations in the symbolic paradigm
rely primarily on reductions involving no dimensional
shift. This feature is not shared by the subsymbolic para
digm, where accurate explanations of intuitive behavior
require descending to the subconceptuallevel. The ele
ments in this explanation, the units, do not have the
semantics of the original behavior: that is the content of
the subconceptual unit hypothesis, (8b). In other words:

(15) Unlike symbolic explanations, subsymbolic explana-
tions rely cnlcially on a semantic ("dimensional'') shift
that accompanies the shift from the conceptual to the
subconceptual levels.

The overall dispositions of cognitive systems are ex
plained in the subsymbolic paradigm as approximate
higher-level regularities that emerge from quantitative
laws operating at a more fundamental level with differ
ent semantics. This is the kind of reduction familiar in
natu ral science, exemplified by the explanation of the
laws of thermodynamic.s through a reduction to mechan
ics that involves shifting the dimension from thermal
semantics to molecular semantics. (Section 9 discusses
SOme explicit subsymbolic reductions of symbolic explan
atory constructs.)

Indeed the subsymbolic paradigm repeals the other
features that Haugeland identified as newly introduced
into scientific explanation by the symbolic paradigm.
The inputs and outputs of the system are not
quasilinguistic representations but good old-fashioned
numerical vectors. These inputs and outputs have se
mantic interpretations, but these are not constructed
recursively from interpretations of embedded constitu-
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ents. The fundamental laws are good old-fashioned nu
merical equations.

Haugeland went to considerable effOlt to legitimize
the form of explanation and reduction used in the sym
bolic paradigm. Tbe cxplanations and rednctions of the
subsymbolic paradigm, by contrast, are of a type well
established in natural science.

III summary, let me emphasize that in the subsym
bolic paradigm, the conceptual and subconceptuallevels
are not related as the levels of a von Neumann computer
(high-level-language progranl, compiled low-level pro
gram, etc.). The relationship between subsymbolic and
symbolic models is more like that between quantum and
classical mechanics. Subsymbolic models accurately de
scribe the microstructure of cognition, whereas symbolic
models provide an approximate descIiption of the mac
rostructure. An important job of subsYlnbolic theory is to
delineate the situations and the respects in which the
symbolic approximation is valid, and to explain why.

6. Conscious rule application in the sUbsymbolic
paradigm

In the symbolic paradigm, both conscious rule applica
tion and intuition are described at the conceptual level;
that is, conscious and unconscious rule interpretation,
respectively. In the subsymbolic paradigm, conscious
rule application can be formalized in the conceptual
level but intuition must be formalized at the suhconcep
tuallevel. This suggests that a subsymbolic model of a
cognitive process that involves both intuition and con
scious ruJe interpretation would consist of two compo
nents using quite different fOrmalisms. While this hybrid
fonnalism might have considerable practical value, there
are some theoretical problems with it. How would the
two fonnalisms communicate? How would the hybrid
system evolve with experience, reflecting the develop
ment of intuition and the subsequent remission of con
scious rule application? How would the hybrid system
elucidate the fallibility of actual human rule application
(e.g., logic)? How would the hybrid system get us closer
to understanding how conscious rule application is
achieved neurally?

All these problems cau be addressed by adopting a
unified subconceptual-Ievel analysis of both intuition
and conscious rule interpretation. The virtual machine
that is the conscious rule interpreter is to be imple
mented in a lower-level virtual machine: the same con
nectionist dynamical system that models the intuitive
processor. How this can, in principle, be achieved is the
subject of this section. The relative advantages and dis
advantages of implementing the rule interpreter in a
connectionist dynamical system, rather than a von Neu
mann machine, will also be considered.

Section 2. I described the power of natural language
for the propagation of cultural knowledge and the in
struction of novices. Someone who has mastered a natu
rallanguage has a powe>ful trick available for performing
in domains where experience has been insufBcient for
the development of intuition: Verbally expressed rules,
whether resident in memory or on paper, can be used to
direct a step-by-step course to an answer. Once subsym
bolic models have acbieved a sufficient subset of the
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power to process natural language, they will be able to
exploit the same trick. A subsymbolic system with natu
rallanguage competence will he able to encode linguistiC
expressions as pattenls of activity; like all other patterns
of activity, these can be stored in connectionist memo
ries using standard procedures. If the linguistic ex
pressions stored in memory happen to be rules, the sub
symbolic system can use them to solve problems
sequentially in the following way. Suppose, for con
creteness, that the rules stored in memory are produc
tiou rules of the form "if condition holds, then do ac
tion." H the system finds itself in a particular situation
where condition holds, then the stored production can
be retrieved from the connectionist memory via the
characteristic content-addressability of these memories:
of the activity pattenl representing the entire produc
tion, the subpart that pertains to condition is present,
and this then leads to the reinstantiation in the memory
of the entire pattern representing the production. The
competence of the subsymbolic system to process natu
rallanguage must include tbe ability to take tbe portion
of the reinstantiated pattern that encodes the verbal de
scription of action, and actually execute the action it
describes; that is, the subsymbolic system must be able
~o interpret, in the computational sense of the term, the
memorized description ofaction. The result is a subsym
bolic implementation ofa production system, built pure
ly out of subsymbolic natural language processing mech
anisms. A connectionist account of natural language
processes must eventually be developed as part of the
subsymbolic paradigm, because natural language pro
cesses of fluent speakers are intuitive and thus, accord
ing to the subsymbolic hypothesis (8), must be modeled at
the subconceptllallevelusing subsymbolic computation.

In summary:

(16) The competence to represent and process linguistic
structures in a native language is a competence ofthe
human intuitive processor; the subsymbolic paradigm
assumes that this competence can be modeled in a
subconceptual connectionist dynamical system. By
combining such linguistic competence with the meln
01)' capabilities of connectionist systems, sequential
rule interpretation COOl be implemented.

Now note that our subsymbolic system can use its
stored rules to perform the task. The standard learning
procedures of connectionist models now tum this experi
ence ofperforming the task into a set of weights for going
from inputs to outputs. Eventually, after enough experi
ence, the task can be performed directly by tbese
weights. The input activity generates the output activity
so quickly that before the relatively slow rule-interpreta
tion process has a chance to reinstalltiate the fIrst rule in
memory and interpret it, the task is done. With inter
mediate amounts of experience, some of the weights are
well enough in place to prevent some of the rules from
having the chance to instantiate, while others are not,
enabling other rules to be retrieved and interpreted.

6.1. Rule interpretation, consciousness, and seriality. Wbat
about the conscious aspect of rule interpretation? Since
consciousness seems to be a quite high-level description
of men,tal activity, it is reasonable to suspect that it



reflects the very coarse structure ofthe cognitive dynam
ical system. This suggests the following hypothesis:

6.2. Symbolic versus subsymbolic implementation of rule
interpretation. The (approximate) implementation of the
conscious rule interpreter in a subsymbolic system has
both advantages and disadv~ntages relative to an (exact)
implementation in a von Neumann machine.

The main disadvantage is that subconceptual represen-

(See Rumelhalt, Smolensky, McClelland & Hinton 1986.
Note that (17) hypothesizes a necessary - not a sufficient
- condition for an aspect of the subsymbolic state to be
relevant to the conscious state.) The spatial aspect of this.
hypothesis has already played a major role in this article
it is in fact a restatement of the subconceptual unit
hypothesis, (8b): Concepts that are consciously accessible
correspond to patterns Over large numbers of units. It is
the temporal aspect of hypothesis (17) that is relevant
here. The rule interpretation process requires that the
retrieved linguistically coded rule be maintained in mem
ory while it is being interpreted. Thus the pattern of
activity representing the rule must be stable for a rela
tively long time. In contrast, after connections have been
developed to perform the task directly, there is no corre
spondingly stahle pattern formed during the performance
of the task. Thus the loss of conscious phenomenology
with expertise can be understood naturally.

On this account, the sequentiality of the rule in
terpretation process is not built into the architecture;
rather, it is linked to our ability to follow only one verbal
instruction at a time. Connectionist memories have the
ability to retrieve a single stored item, and here this
ability is called upon so that the linguistic interpreter is
not required to interpret multiple instructions simultane
ously.

It is interesting to note that the preceding analysis also
applies to nonlinguistic rules: Any notational system that
can be appropriately interpreted will do. For example,
another type of rule might be a short series of musical
pitches; a memorized collection ofsuch rules would allow
a musician to playa tune by conscious rule interpretation.
With practice, the need for conscious control goes away.
Since pianists learn to interpret several notes simul
taneously, the present account suggests that a pianist
might be able to apply more than one musical rule at a
time; if the pianist's memory for these rules can simul
taneously recall more than one, it would be possible to
generate multiple musical lines simultaneously using
conscious rule interpretation. A symbolic account ofsuch
a process would involve something like a production
system capable of fIring multiple productions simultane
ously.

Finally, it should be noted that even if the memorized
mles are assumed to be linguistically coded, the preced
ing analysis is uncommitted about the form the encoded
rules take in memory: phonological, orthographic, se
mantic, or whatever.

(17) The contents of consciousness reflect only the large
scale structure of activity patterns: subpattems of ac
tivity that are extended over spatially large regions of
the network and that are stable for relatively long
periods of time.
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tation and interpretation oflinguistic instructions is very
difficult and we are not actually able to do it now. Most
existing subsymbolic systems simply don't use rule in
terpretation. 8 Thus they miss out on all the advantages
listed in (2). TI,ey can't take advantage of mles to check
the results produced by the intuitive processor. They

. can't bootstrap their way into a new domain using rules to
generate their own experience: they must have a teacher
generate it for them. 9

There are several advantages of a subconceptually
implemented rule interpreter. The intuitive processor
and rule interpreter are lilghly integrated, with broad
band communication between them. Understanding how
this communication works should allow the design of
efficient hybrid symboliclsubsymbolic systems with ef
fective communication between the processors. A prin
cipled basis is provided for studying how rule-based
knowledge leads to intuitive knowledge. Perhaps most
interesting, in a subsymbolic rule interpreter, the pro
cess ofrule selection is intuitive! Which rule is reinstanti
ated in memory at a given time is the result of the
associative retrieval process, which has many nice prop
erties. The best match to the productions' conditions is
quickly computed, and even if no match is very good, a
rule can be retrieved. The selection process can be quite
context-sensitive.

An integrated subsymbolic rule interpreter/intuitive
processor in principle offers the advantages ofboth kinds
of processing. Imagine such a system creating a mathe
matical proof. The intuitive processor would generate
goals and steps, and the rule interpreter would verify
their validity. The serial search through the space of
possible steps, which is necessary in a purely symbolic
approach, is replaced by the intuitive generation of pos
sibilities. Yet the precise adherence to strict inference
rules that is demanded by the task can be enforced by the
rule interpreter; the creativity of intuition can be ex
ploited while its unreliability can be controlled.

6.3. Two kinds of knowledge - one knowledge medium.
Most existing subsymbolic systems perform tasks without
serial rule interpretation: Patterns of activity represent
ing inputs are directly transformed (possibly through
multiple layers of units) into patterns of activity repre
senting outputs. The connections· that mediate this trans
formation represent a form of task knowledge that can be
applied with massive parallelism: I will call it P-knowl
edge. For example, the P-knowledge in a native speaker
presumably encodes lexical, morphological, syntactic,
semantic, and pragmatic constraints in such a form that all
these constraints can be satisfied in parallel during Com
prehension and generation.

The connectionist implementation of sequential rule
interpretation described above displays a second form
that knowledge can take in a subsymbolic system. The
stored activity patterns that represent rules also con
stitute task knowledge: Call it S-knowledge. Like P
knowledge, S-knowledge is embedded in connections:
the connections that enable part ofa rule to reinstantiate
the entire rule. Unlike P-knowledge, S-knowledge can
not be used with massive parallelism. For example, a
novice speaker of some language cannot satisfy the con
sh'aints contained in two memorized rules simultane
ously; they must be serially reinstantiated as patterns of
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activity and separately interpreted. Of course, the con
nections responsible for reinstantiating these memories
operate in parallel, and indeed these connections contain
within them the potential to reinstantiate either of the
two memorized rules. But these connections are so ar
ranged that only one rule at a time can be reinstantiated.
The retrieval of each rule is a parallel process, but the
satisfaction of the constraints contained within the two
rules is a serial process. After considerable experience, P
knowledge is created: connections that can simul
taneously satisfY the constraints represented by the two
rules.

P-knowledge is considerably more diHlcult to create
than S-knowledge, To encode a constraint in connections
so that it can be satisfied in parallel with thousands of
others is not an easy task. Such an encoding can only be
learned through considerable experience in which that
constraint has appeared in many different contexts, so
that the connections enforcing the constraint can be
tuned to operate in parallel with those enforcing a wide
variety ofother constraints. S-knowledge can be acquired
(once the linguistic skills on which it depends have been
encoded into P-knowledge, of course) much more
rapidly. For example, simply reciting a verbal rule over
and over will usually suffice to store it in memory, at least
temporarily.

That P-knowledge is so highly context-dependent
while the rules of S-knowledge are essentially context
independent is an important computational fact underly
ing many of the psychological explanations offered by
subsymbolic models. Consider, for example, Rumelhart
and McClelland's (1986) model ofthe U-shaped curve for
past-tense production in children. The phenomenon is
striking: A child is observed using goed and wented when
at a much younger age went was reliably used. This is
surprising because we are prone to think that such lin
guistic abilities rest on knowledge that is encoded in some
context-independent form such as Hthe past tense ofgo is
went." Why should a child lose such a rule once acquired?
A traditional answer invokes the acquisition of a different
context-independent rule, such as "the past tense ofx is x
+ ed" which, for one reason or another, takes prece
dence. The point here, however, is that there is nothing
at all surprising about the phenomenon when the under
lying knowledge is assumed to be context-dependent and
not context-independent. The young child has a small
vocabulary of largely irregular verbs. The connections
that implement this P-knowledge are reliable in produc
ing the large pattern ofactivity representing went, as well
as those representing a small number ofother past~tense
forms. Informally we can say that the connections produc
ing went do so in the context ofthe other vocabulary items
that are also stored in the same connections. There is no
guarantee that these connections wi]] produce went in the
context of a different vocabulary. As the child acquires
additional vocabulary items, most of which are regular,
the context radically changes. Connections that were, so
to speak, perfectly adequate for creating went in the old
context now have to work in a context where very strong
connections are trying to create forms ending in -ed; the
old connections are not up to the new task. Only through
extensive experience trying to produce went in the new
context of many regular verbs can the old connections be
modified to work in the new context. In particular, strong
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new connections must be added that, when the input
pattenl encodes go, cancel the -ed in the output; these
were not needed before.

These observations about context-dependence can also
be framed in terms of inference. Ifwe choose to regard
the child as using knowledge to infer the correct answer
went, then we can say that after the child has added more
lmowledge (about new verbs), the ability to make tl,e
(correct) inference is lost. In this sense the child's in
ference process is nonmonotonic - perhaps this is why we
find the phenomenon surprising. As will be discussed in
Section 8, nonmonotonicity is a fundaIuental property of
subsymbolic inference.

To summarize:

(18) a. Knowledge in subsymbolic systems can take two
forms, both resident -in the connections,

b. The knowledge used by the conscious rule interpreter
lies in connections that reinstantiate patterns encoding
rules; task consh'aints are coded in context-indepen
dent rules and satisfied serially.

c. The knowledge used in intuitive processing lies in
connections that constitute highly context-dependent
encodings of task constraints that can be satisfied with
luassive parallelism.

d. Learning such encodings requires much experience.

7. Subsymbolic definition of cognitive systems
and some foundational issues

In order for tile subconceptuallevel to be rightly viewed
as a level for practicing cognitive science, it is necessary
that the principles formulated at tllis level truly be princi
ples of cognition. Since subsymbolic principles arc nei
ther conceptual-level nor neural-level pIinciples, it is not
immediately apparent what kind of cognitive principles
they might be. The structure of subsymbolic models is
that ofa dynamical system; in what sen"se do these models
embody principles of cognition rather thaIl principles of
physics?

What distinguishes those dynaInical systems that are
cognitive from those that are not? At this point the types
of dynamical systems being studied in connectionist cog
nitive science lack anything that could justly be called an
intentional psychology. In this section I wish to show that
it is nonetheless possible to distinguish the sort ofdynam
ical systems tllat have so far been the object of study in
connectionist cognitive science from the dynamical sys
tems that have traditionally been the subject matter of
physics, and that the questions being studied are indeed
questions of cognition.

A crucial property of cognitive systems broadly con
strued is that over a wide variety of environments they
can maintain, at an adequately constant level, the degree
to which a significant number of goal conditions are met.
Here I intend the teleological, rather than the inten
tional, sense of "goal." A river, for example, is a complex
dynaInical system that responds sensitively to its environ
me~t- but about the only condition that it can satisfY over
a large range of environments is going downhill. A cock
roach manages, over an annoyingly extensive raIlge of
environments, to maintain its nutritive intake, its re
productive demands, its oxygen intake, even its proba
bility of getting smashed, all within a relatively narrow



baneJ. The repertoire of conditions that people can keep
satisfied, and the range ofenvironments under which this
relative constancy can be maintained, provides a measure
worthy of the human cognitive capacity.

(19) Cognitive system:
A necessary condition for a dynamical system to be
cognitive is that, under'a wide variety of environmen
tal conditions, it maintains a large number of goal
conditions, The greater the repertoire of goals and
variety of tolerable environmental conditions, the
greater the cognitive capacity of the system.

The issue of complexity is crucial here. A river (or a
thermostat) only fails to be a cognitive dynamical system
because it cannot satisfy a large range of goals under a
wide range of conditions. 10 Complexity is largely what
distinguishes the dynamical systems studied in the sub
symbolic paradigm from those traditionally studied in
physics. Connectionist dynamical systems have great
complexity: The information content in their .weights is
very high. Studying the extent to which a connectionist
dynamical system can achieve complex goals in complex
environments requires grappling with complexity in dy
namical systems in a way that is traditionally avoided in
physics. In cognitive modeling, many of the basic ques
tions concern the detailed dynamics of a distinct pattern
ofactivation in a system with a particular initial state and a
particular set of interaction strengths that are highly
nonhomogeneous. This is like asking a physicist: "Sup
pose we have a gas with 10,000 particles with the follow
ing 10,000 different masses and the follOWing 500,000
different forces between them. Suppose we start them at
rest in the following 10,000 positions. What are the
trajectories ofthe follOwing 20 particles?" This is indeed a
question about a dynamical system, and is, in a sense, a
question of physics. It is this kind of question, however,
that is avoided at all costs in physics. The physicist we
consulted is likely to compute the mean collision times for
the particles assuming equal masses, random starting

l!.,?,si_tioll.S, and uniformly random il).teractions, and say "if
that isn't good enough, then take your question to a
computer. "ll

Nonetheless, physics has valuable concepts and tech
niques to contribute to the study ofconnectionist dynam
ical systems. Insights from physics have already proved
important in various ways in the subsymbolic paradigm
(Hinton & Sejnowski 1983a; Sejnowski 1976; Smolensky
1983).

Various subsymbolic models have addressed various
goals and environments. A very general goal that is of
particular importance is:

(20) The prediction goal: Given some partial information
about the environmental state, correctly infer missing
information.

What is maintained here is the degree of match between
predicted values and the actual values fo,. the unknowns.
Maintenance of this match over the wide range of condi
tions found in a complex environment is a difficult task.
Special cases of this task include predicting the depth of
an object from retinal images, the future location of a
moving object, the change in certain aspects ofan electric
circuit given the changes in other aspects, or the proposi
tions implied by a text. The prediction goal is obviously an
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important one, because it can serve so many other goals:
Accurate prediction of the effects of actions allows the
selection of those leading to desired effects.

A closely related goal is:

(21) The prediction-from-examples goal: Given more and
more examples ofstates from an·environment, achieve
the prediction goal with increasing accuracy in that
environment.

For the prediction goal we ask: What inference pro
cedures and knowledge about an environment must a
dynamical system possess to be able to predict that
environment? For the prediction-from-examples goal we
go further and ask: What learning procedures must a
dynamical system possess to be able to acquire the neces
sary knowledge about an environment from examples?

The goals of predictionand prediction-fi·om-examples
al·e the subject of many principles of the subsymbolic
paradigm. These are indeed, cognitive principles. They
will be taken up in the next section; first, however, I
would like to consider some implications of this charac
terization of a cognitive system for certain foundational
issues: semantics, rationality, and the constituent struc
ture of mental states. It·would be absurd to suggest that
the following few paragraphs constitute definitive treat
ments of these issues; the intent is rather to indicate
speciflc points where subsymbolic research touches on
these issues and to sow seeds for further analysis.

7.1. Semantics and rationality in the subsymbolic paradigm.
The subsymbolic characterization of a cognitive system
(19) intrinsically binds cognitive systems both to states of
the environment and to goal conditions. It therefore has
implications for the question: How do states ofa subsym
bolic system get their meanings and truth conditions? A
starting point for an answer is suggested in the following
hypothesis:

(22) Subsymbolic semanHcs:
A cognitive system adopts various internal states in
various environmental conditions. To the extent that
the cognitive system meets its goal conditions in vari
ous enviromnental conditions" its internal states are
veridical representations of the con·esponding en
VIronmental states, with respect to the given goal
conditions.

For the prediction goal, for example, a state of the
subsymbolic system is a veridical representation of the
current environmental state to the extent that it leads to
correct predictions. -I

According to hypothesis (22), it is not possible to
localize a failure ofveridical representation. Any particu
lar state is part of a large causal system of states, and
failures of the system to meet goal conditions cannot in
general be localized to any particular state or state compo
nent.'2 In subsymbolic systems, this assignment a[blame
problem (Minsky 1963)_ is a difficult one, and it makes
programming subsymbolic models by hand very tricky.
Solving the assignment of blame problem is one of the
central accomplishments of the automatic network pro
gramming procedures: the learning procedures of the
subsymbolic paradigm.

The characterization (19) ofcognitive systems relates to
rationality as well. How can one build a rational machine?
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How can internal processes (e.g., inference) be guarau
teed to preserve veridical semantic relationships (e.g., be
truth preserving)? TIlese questions now become: How
can the connection strengths be set so that the subsym
bolic system will meet its goal conditions? Again, this is a
question answered by the scientific discoveries of the
subsymbolic paradigm: particular procedures for pro
grannning machines to meet certain goals - especially
learning procedures to meet adaptation goals such as
prediction-from-examples.

Let me cOlupare this subsymbolic approach to ver
idicality with a symbolic approach to truth preservation
offered by Fodor (1975; 1987). In the context of model
theoretic semantics for a set of symbolic formulae, proof
theory provides a set of symbol manipulations (rules of
inference) guaranteed to preserve truth conditions. Thus
ifan agent possesses knowledge in the symbolic form p-->

, q and additionallmowledge p, then by syntactic opera
tions the agent can produce q; proof theory guarantees
that the truth conditions of the agent's knowledge (or
beliefs) has not changed.

There are fairly direct subsymbolic counterparts to this
proof theoretic account. The role of logical inference is
played by statistical inference. By explicitly formalizing
tasks like prediction as statistical inference tasks, it is
possible to prove for appropriate' systems that subsym
bolic computation is valid in a sense directly comparable
to s}'lubolic proof Further discussion ofthis point, which
will appear in Section 9.1, must await further examination
of the computational framework of the subsymbolic para
digm, which is the subject of Section 8.

Note that the proof theoretic account explains the
tautological inference ofq from p and p --> q, but it leaves
to an independent module an account of how the agent
acquired the knowledge p--> q that licenses the inference
from p to q. In the subsymbolic account, the veridicality
problem is tied inextricably to the environment in which
the agent is trying to satisfy the goal conditions - subsym
bolic seIuantics is intrinsically situated. The subsymbolic
analysis of veridicality involves the following basic ques
tions: How can a cognitive system be put in a novel
environment and learn to create veridical intenlal repre
sentations that allow valid inferences about that environ
ment so that goal conditions can be satisfied? How can it
pick up information from its environment? These are
exactly the questions addressed by subsymbolic learning
procedures.

Note that in the subsymbolic case, the internal process
ing mechanisms (which can appropriately be called in
ference procedures) do not, of course, directly depend
causally on the environmental state that may be internally
represented or on the veridicality of that representation.
In that sense, they are just as formal as syntactic symbol
manipulations. The fact that a subsymbolic system can
generate veridical representation"s of the environment
(e.g., make valid predictions) is a result of extracting
infonuation from the environment and internally coding
it in its weights through a learning procedure.

7.2. Constituent structure of mental states. Fodor and
Pylyshyn have argued (e.g., Fodor 1975; Pylyshyn 1984)
that mental states must have constituent structure, and
they have used this. argument against the connectionist
approach (Fodor & Pylyshyn 1988). Their argument ap-
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plies, however, only to ultra-local connectionist nlOdels
(Ballard & Hayes 1984); it is quite inapplicable to the
distributed connectionist systeIUS considered here. A
Inental state in a subsymbolic system is a pattern of
activity with a constituent structure that can be analyzed
at both the conceptual and tile subconceptuallevels. In
this section I offer a few general observations on this
issue; the connectionist representation ofcomplex struc
tures is an active area of research (Slnolensky 1987;
Touretzky 1986), and many difficult problems remain to
be solved (for futher discussion see Smolensky 1988).

At the conceptual level, a connectionist mental state
contains constituent subpatterns that have conceptual
interpretations. Pylyshyn, in a debate over the connec
tionist approach at the 1984 meeting of ti,e Cognitive
Science Society, suggested how to extract these conCep
tual constituents with the following example: TIle connec
tionist representation of coffee is the representation of
(,~up with coffee minus the representation of cup without
coffee. To carry out this suggestion, imagine a crude but
adequate kind of distributed semantic representation, in
which the interpretation of cup with coffee involves the
activity ofnetwork units representing features like brown
liquid with /lat top surface, brown liquid with curved
sides and bottom smface, brown liquid contacting por
celain, hot liquid, upright container with a handle, burnt
odor, and so forth. We should really use subconceptual
features, but even these features are sufficiently low-level
to make tile point. Following Pylyshyn, we take this
representation ofthe interpretation ofcup with coffee and
subtract from it the representation ofthe interpretation of
cup without coffee, leaving the representation of coffee.
What remains, in fact, is a pattern of activity with active
features such as brown liquid with flat top surface, brown
liquid with curved sides and bottom smface, brown liquid
contacting porcelain, hot liquid, and burnt odor. This
represents coffee, in some sense - but coffee in the
context of cup.

In using Pylyshyn's procedure for determining the
conneetiOllist representation of coffee, there is nothing
sacred about starting with cup with coffee: why not start
with can with coffee, tree with coffee, or man with coffee,
and subtract the corresponding representation ofX with
out coffee? Thinking back to the distributed featural
representation, it is clear that each of these procedures
produces quite a different result for "the" connectionist
representation of coffee. The pattem representing coffee
in the context of cup is quite different from the pattern
representing coffee in the context of can, tree, or man.

The pattern representing cup with coffee can be de
composed into conceptual-level constituents, one for
coffee and another for cup. This decomposition differs in
two significant ways from the decomposition of the sym
bolic expression cup with coffee, into the three constitu
ents, coffee, cup, and with. First, the decomposition is
quite approximate. TIle patten) of features representing
cup with coffee may well, as in the imagined case above,
possess a subpattem that can be identified with coffee, as
well as a subpattern tI,at can be identified with cup; but
these subpatterns will in general not be defined precisely
and there will typically remain features that can be
identified only with the interaction ofthe two (as in brown
liquid contacting porcelain). Second, whatever the sub
pattern identified with coffee, unlike the symbol coffee, it



is a context-dependent constituent, one whose internal
structure is heavily influenced by the structure ofwhich it
is a part.

These constituent subpatterns representing coffee in
varying contexts are activity vectors that are not identical,
but possess a rich structure of commonalities and dif
ferences (a family resemblance, one might say). The
commonalities are directly responsible for the common
processing implications of the interpretations of these
various phrases, so the approximate equivalence of the
coffee vectors across contexts plays a functional role in
subsymbolic processing that is quite close to the role
played by the exact equivalence of the coffee tokens
across different contexts in a symbolic processing system.

The conceptual-level constituents of mental states are
activity vectors, which themselves have constituent
structure at the subconceptuallevel: the individual units'
activities. To summarize the relationship between these
notions of constituent structure in the symbolic and
subsymbolic paradigms, let's call each coffee vector the
(connectionist) symbol for coffee in the given context.
Then we can say that the context alters the internal
structure of the symbol; the activities of the subconcep
tual units that comprise the symbol - its subsymbols 
change across contexts. In the symbolic paradigm, a
symbol is effectively coHtextualized by surrounding it
with other symbols in some larger structure. In other
words:

(23) Symbols and context dependence:
In the symbolic paradigm, the context of a symbol is
manifest around it and consists ofother symbols; in the
subsymbolic paradigm, the context of a symbol is
manifest inside it and consists of subsymbols.

(Compare Hofstadter 1979; 1985.)

8. Computation at the subconceptual level

Hypothesis (8a) offers a brief characterization of the
connectionist architecture assumed at the subconceptual
level by the subsymbolic paradigm. It is time to bring out
the computational principles implicit in that hypothesis.

8.1. Continuity. According to (8a), a connectionist dynam
ical system has a continuous space of states and changes
state continuously in time. I take time in this section to
motivate at some length this assumption of continuity,
because it plays a central role in the characterization of
subsymbolic computation and because readers familiar
with the literature on connectionist models will no doubt
require that I reconcile the continuity assumption with
some salient candidate counterexamples.

Within the symbolic paradigm, the simplest, most
straightfOIward formalizations of a number of cognitive
processes have quite discrete characters:

(24) a. Discrete memory locations, in which items are stored
without mutual interaction.

b. Discrete memory storage and retrieval operations, in
which an entire item is stored or retrieved in a stngle.
atomic (primitive) operation.

c. Discrete learning operations, in which new rules be
come aVailabfe for Use in an all~or-none fasmon.

d. Discrete inference operations, in which conclusions
become available for use in an all-or-none fashion.
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e. Discrete categories, to which items either belong or do
not belong.

f. Discrete production rules, with conditions that are
either satisfied or not satisfied, and actions that either
execllte or do not execlIte.

TIlese discrete features come "for free" in the symbolic
paradigm: Ofcourse, anyone ofthem can be softened but
only by explicitly building in machinery to do so.

Obviously (24) is a pretty crude characterization of
cognitive behavior. Cognition seems to be a richly inter
woven fabric of graded, continuous processes and dis
crete, all-or-none processes. One way to model this
interplay is to posit separate discrete and continuous
processors in interaction. Some theoretical problems
with this move were mentioned in Section 6, where a
unified formalism was advocated. It is difficult to intro
duce a hard separation between the soft and the hard
components of processing. An alternative is to adopt a
fundamentally symbolic approach, but to soften various
forms ofdiscreteness by hand. For example, the degree of
match to conditions of production rules can be given
numerical values, productions can be given strengths,
interactions between separately stored memory items
can be put in by hand, and so on (Anderson 1983).

The subsymbolic paradigm offers another alternative.
All the discrete features of (24) are neatly swept aside in
One stroke by adopting a continuous framework that
applies at the subconceptuallevel. Then, when the con
tinuous system is analyzed at the higher, conceptual
level, various aspects of discreteness emerge naturally
and inevitably, without explicit machinery having been
devised to create this discreteness. These aspects of
"hardness" are intrinsically embedded in a fundamen
tally "soft.. system. The dilemma of accounting for both
the hard and soft aspects of cognition is solved by using
the passage from a lower level ofanalysis to a higher level
to introduce natural changes in the character of the
system: The emergent properties can have a different
nature from the fundamental properties. This is the story
to be fleshed out in the remainder of the paper. It rests on
the fundamental continuity ofsubsymbolic computation,
which is further motivated in the remainder of this
section (for further discussion see Smolensky 1988).

It may appear that the continuous nature of subsym
bolic systems is contradicted by the fact that it is easy to
find in the connectionist literature models that are quite
within the spirit of the subsymbolic paradigm, but which
have neither continuous state spaces nor continuous
dynamics. For example, models having units with binary
values that jump discretely on the ticks ofa discrete clock
(the Boltzmann machine, Ackley et al. 1985; Hinton &
Sejnowski 1983a; harmony theory, Smolensky [983;
1986a). I will now argue that these models should be
viewed as discrete simulations of an underlying continu
ous modeJ, considering first discretization of time and
then discretization of the units' values.

Dynamical systems evolving in continuous time are
almost always simulated on digital computers by dis
cretizing time. Since subsymbolic models have almost
always been simulated on digital computers, it is no
surprise that they too have been simulated by discretizing
time. The equations defining the dynamics ofthe models
can be understood more easily by most cognitive scien-
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tists ifthe differential equations of the underlying contin
uous dynamical system are avoided in favor of the dis
crete-time approximations that actually get simulated.

When subsymbolic models use binary-valued units,
these values are best viewed not as symbols like T and
NIL that are used for conditional branching tests, but as
numbers (not numerals!) like 1 and 0 that are used for
numerical operations (e.g., multiplication by weights,
summation, exponentiation). These models are formu
lated in such a way that they are pmfectly well-defined for
continuous values of the units. Discrete numerical unit
values are no more than a simplification that is sometimes
convenient. 13

As historical evidence that underlying subsymbolic
models are continuous systems, it is interesting to note
that when the theoretical conditions that license the
discrete approximation have changed, the models have
reverted to continuous values. In the harmony/energy
optima model, when the jumpy stochastic search was
replaced by a smooth deterministic one (Rumelhart,
Smolensky, McClelland & Hinton 1986), the units were
changed to continuous ones. 14

A second, quite dramatic, piece of historical evidence
is a case where switching from discrete to continuous
units made possible a revolution in subsymbolic learning
theory. In tlleir classic book, Perceptrons, Minsky and
Papert (1969) exploited primarily discrete mathematical
methods that were compatible with the choice of binary
units. They were incapable of analyzing any but the
simplest learning networks. By changing the discrete
threshold function of perceptrons to a smooth, differ
entiable curve, and thereby defining continuous-valued
units, Rumelhart, Hinton, and Williams (1986) were able
to apply continuous analytic methods to more complex
learning networks. The result was a major advance in the
power of subsymboHc learning.

A third historical example of the power ofa continuous
conception of .subsymbolic computation relates to the
connectionist generation of sequences. Traditionally this
task has been viewed as making a connectionist system
jump discretely between states to generate an arbitrary
discrete sequence of actions A 1 ,A2 ,···. This view of the
task reduces the connectionist system to a finite state
machine that can offer little new to the analysis ofsequen
tial behavior. Recently Jordan (1986) has shown how a
subsymbolic approach can give "for free" co-articulation
effects where the manner in which actions are executed is
influenced by future actions. Such effects are just what
should come automatically from implementing serial be
havior in a fundamentally parallel machine. Jordan's trick
is to view the connectionist system as evolving continu
ously in time, with the task being the generation of a
continuous trajectory through state space, a trajectory
that meets as boundary conditions certain constraints, for
example, that the discrete times 1, 2, ... the system state
must be in regions corresponding to the actions AI' A2 ,

The final point is a foundational one. TIle theory of
discrete computation is quite well understood. If there is
any new theory of computation implicit in the subsym
bolic approach, it is likely to be a result ofa fundamentally
different, continuous fOrmulation of computation. It
therefore seems fruitful, in order to maximize the oppor
tunity for the subsymbolic paradigm to contribute new
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computational insights, to hypothesize that subsymbolic
computation is fundamentally contiuuous.

It must be emphasized that the discrete/continuous
distinction cannot be understood completely by looking
at simulations. Discrete and continuous machines can of
course simulate each other. The claim here is that the
most analytically powerful descriptions of subsymbolic
models are continuous ones, whereas those of symbolic
models are not continuous.

This has profound significance because it means that
many ofthe concepts used to understand cognition in the
subsymbolic paradigm come from the category of contin
uous mathematics, while those used in the symbolic
paradigm come nearly exclusively from discrete mathe
matics. Concepts from physics, from the theory of dy
namical systems, are at least as likely to be important as
concepts from the theory of digital computation. And
analog computers, both electronic and optical, provide
natural implementation media for subsymbolic systems
(Anderson 1986; Cohen 1986).

8.2. Subsymbolic computation. An important illustration of
the continuous/discrete mathematics contrast that dis
tinguishes subsymbolic from symbolic computation is
found in inference. A natural way to look at the knowl
edge stored in connections is to view each connection as a
soft constraint. A positive (excitatory) connection from
unit a to unit b represents a soft constraint to the effect
tlmt if a is active, then b should be too. A negative
(inhibitory) connection represents the opposite con
straint. The numerical magnitude of a connection repre
sents the strength of the constraint.

Formalizing knowledge in soft constraints rather than
hard rules has important consequences. Hard constraints
have consequences singly; they are rules that can be
applied separately and sequentially - the operation of
each proceeding independently of whatever other rules
may exist. But soft constraints have no implications sin
gly; anyone can be overridden by the others. It is only the
entire set of soft constraints that has any implications.
Inference must be a cooperative process, like the parallel
relaxation processes typically found in subsymbolic sys
tems. Furthermore, adding additional soft constraints
can repeal conclusions that were formerly valid: Subsym
bolic inference is fundamentally nonmonotonic.

One way of formalizing soft constraint satisfaction is in
terms of statistical inference. In certain subsymboUc
systems, tlle soft constraints can be identified as statistical
parameters, and the activation passing procedures can be
identified as statistical inference procedures (Geman &
Geman 1984; Hinton & Sejnowski 1983b; Pearl 1985;
Shastri 1985; Smolensky 19800). This identification is
usually rather complex and subtle: Unlike in classical
"spreading activation" models and in many local connec
tionist models, the strength of the connection between
two units is not determined solely by the correlation
between tlteir ac,tivity (or their «degree of association").
To implement subsymbolic statistical inference, the cor
rect connection strength between two units will typically
depend on all the other connection strengths. The sub
symbolic learning procedures tllat sort out this interde
pendence through simple, strictly local, computations
and ultimately assign the correct strengtll to each connec
tion ar~ performing no trivial task.



To sum up:

(25) a. Knowledge in subsymbolic computation is formalized
as a large Set of soft coll..'itraints.

b. Inference with soft consh·aints is fundamentally a par
allel process.

c. Inference with soft constraints is fundamentally
nonmonotonic.

d, Certain slIbsymbolic systems can be identified as using
statistiClI inferen~.

9. Conceptual-level descriptions of intuition

The previous section concerned computation in subsym
bolic systems analyzed at the subconceptual-level, the
level of units and connections. In this final section I
consider analyses of subsymbolic .computation at the
higher, conceptual level. Section 6 discussed subsym
bolic modeling of conscious rule interpretation; here I
consider subsymbolic models ofintnitive processes. I will
elaborate the point foreshadowed in Section 5: Concep
tual-level descriptions of aspects of subsymbolic models
of intuitive processing roughly approximate symbolic
accounts. The picture that emerges is of a symbiosis
between the symbolic and subsymbolic paradigms: The
symbolic paradigm offers concepts for better understand
ing subsymbolic models, and those concepts are in turn
illuminated with a fresh light by the subsymbolic para
digm.

9.1. The Best Fit Principle. The notion that each connection
represents a soft constraint can be formulated at a higher
level:

(26) The Best Fit Principle:
Given an input, a subsymbolic system outputs a set of
inferences that, as a whole, gives a best fit to the input,
in a statistical sense defined by the statistical knowl
edge stored in the system's connections.

In this vague form, this principle can be regarded as a
desideratum of subsymbolic systems. Giving the princi
ple, formal embodiment in a class of connectionist dy
namical systems was the goal ofharmony theory (Riley &
Smolensky 1984; Smolensky 1983; 1984a; 1984b; 1986a;
1986c).

To render the Best Fit Principle precise, it is necessary
to provide precise definitions of "inferences," "best fit,"
and "statistical knowledge stored in the system's connec
tions. "This is done in harmony theory, where the central
object is the harmony function H which measures, for any
possible set of inferences, the goodness offit to the input
with respect to the soft constraints stored in the connec
tion strengths. The set ofinferences with the largest value
of H, that is, highest harmony, is the best set of in
ferences, with respect to a .well-defined statistical
problem.

Harmony theory offers three things. It gives a mathe
matically precise characterization of the prediction-from
examples goal as a statistical inference problem. It tells
how the prediction goal can be achieved using a network
with a certain set of connections. Moreover, it gives a
procedure by which the network can learn the correct
connections with experience, thereby satisfying the pre
diction-from-examples goal.
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The units in harmony networks are stochastic: The
differential equations defining the system are stochastic.
There is a system parameter called the computational
temperature that governs the degree of randomness in
the units' behavior, it goes to zero as the computation
proceeds. (The process is simulated annealing, like in the
Boltzmann machine: Ackley, et al. 1985; Hinton & Sej
nowski 1983a, 1983b, 1986. See Rumelhart, McClelland
& the PDP Research Group, 1986, p. 148, and Smol
ensky, 1986a, for the relations between harmony theory
and the Boltzmann machine.)

9.2. Productions, sequential processing, and logical in
ference. A simple harmony model of expert intuition in
qualitative physics was described by Riley and Smolensky
(1984) and Smolensky (1986a, 1986c). The model answers
questions such as, "What happens to the voltages in this
circuit if! increase this resistor?" (The questions refer to a
particular simple cirCUit; the model's expertise is built in
and not the result oflearning.) This connectionist prob
lem-solving system illustrates several points about the
relations between subconceptual- and conceptual-level
descriptions of subsymbolic computation.

Very briefly, the model looks like this. The state of the
circuit is represented as a vector of activity over a set of
network units we can call circuit state feature units 
"feature units" for short. A subpart of this activity pattern
represents whether the circuit's current has gone up,
down, or stayed the same; other subparts indicate what
has happened to the voltage drops, and so on. Some of
these subpatterns are fixed by the givens in the problem,
and the remainder cOmprise the answer to be computed
by the network. There is a second set of network units,
called knowledge atoms, each of which corresponds to a
subpattem ofactivity over feature units. The subpatterns
of features encoded by knowledge atoms are those that
can appear in representations of possible states of the
circuit: They are subpatterns that are allowed by the laws
ofcircuit physics. The system's knowledge ofOhm'sLaw,
for example, is distributed over the many knowledge
atoms whose subpatterns encode the legal feature com
binations for current, voltage, and resistance. The con
nections in the network determine which feature subpat
tern corresponds to a given knowledge atom. The
subpattern corresponding to knowledge atom {l includes
a positive (negative) value for a particular feature jifthere
is a positive (negative) connection between unit {l and
unitf; the subpattern for a does not include j at all ifthere
is no connection between 0. and f All connections are
two-way: Activity can propagate from feature units to
knowledge atoms and vice versa. The soft constraints
encoded by these connections, then, say that "if subpat
tern a is present, then feature j should be positive
(negative), and vice versa."

In the COurse ofcomputing an answer to a question, the
units in the network change their values hundreds of
times. Each time a unit recomputes its value, we have a
microdecision. As the network converges to a solution, it
is possible to identifY macrodecisions, each of which
amounts to a commitment of part of the network to a
portion of the solution. Each macrodecision is the result
ofmany individual microdecisions. These macrodecisions
are approximately like the firing of production rules. In
fact, these productions fire in essentially the same order
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as in a symbolic forward-chaining inference system. I5

One can measure the total amount oforder in the system
and see that there is a qualitative change in the system
when the first microdecisions are made - the system
changes from a disordered phase to an ordered one.

It is a corollary of the way this network embodies the
problem domain constraints, and the general theorems of
hannony theory, that the system, when given a well
posed problem and unlimited relaxation time, will always
give the correct answer. So under that idealization, the
competence of the system is described by hard con
straints: Ohm's Law, Kirchoffs Law - the laws of simple
circuits. It's as though the model had those laws written
down inside it. However, as in all subsymbolic systems,
the performance of the system is achieved by satisfYing a
large set of soft constraints. What this means is that if we
depart from the ideal conditions under which hard con
straints seem to be obeyed, the illusion that the system
has hard constraints inside is quickly dispelled. The
system can violate Ohm's Law if it has to, but ifit needn't
violate the law, it won't. Outside the idealized domain of
well-posed problems and unlimited processing time, the
system gives sensible performance. It isn't brittle the way
that symbolicillference systems are. Ifthe system is given
an ill-posed problem, it satisfies as many constraints as
possible. If it is given inconsistent infonnation, it doesn't
fall flat and deduce just anything at all. If it is given
insufficient information, it doesn't sit tllere and deduce
nothing at all. Given limited processing time, the pmfor
mance degrades gracefully as well. All these features
emerge «for free," -as automatic consequences of per
fonning inference in a subsymbolic system; no extra
machinery is added on to handle the deviations from ideal
circumstances.

Returning to a physics level analogy introduced in
Section 5, we have a «quantum" system that appears to be
<ONewtonian" under the proper conditions. A system that
has, at the microlevel, soft constraints satisfied in parallel,
has at the macrolevel, under the light circumstances, to
have hard constraints, satisfied serially. But it doesn't
really, and if you go outside the Newtonian domain, you
see that it's really been a quantum system all along.

This model exemplifies the competence/performance
distinction as it appears in the subsymbolicparadigm. We
have an inference system (albeit a very limited one)
whose perfOlmance is completely characterizable at the
subconceptual-level in terms of standard subsymbolic
computation: massively parallel satisfaction of multiple
soft constraints. The system is fundamentally soft. Just
the same, the behavior of the system can be analyzed at a
higher level, and, under appropriate situations (well
posed problems), and under suitable processing idealiza
tions (unlimited computation time), the competence of
the system can be described in utterly different computa
tional terms: The hard rules of the circuit domain. The
competence theory is extremely important, but the per
formance theory uses radically different computational
mechanisms.

The relation of the competence theory and the perfor
mance theory for this model can be viewed as follows. Thc
behavior of the system is determined by its harmony
function, which determines a surface or "landscape» of
harmony values over the space of network states. In this
landscape there are peaks where the harmony achieves its
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maximal value: These global maxima correspond to net
work states representing circuit conditions that satisfy all
the laws of physics. The competence theory nicely de
scribes the structure of this discrete constellation of
global hannony maxima. But these maxima are a tiny
subset of an extended harmony landscape in which they
are embedded, and the network's performance is a
stochastic search over the hannony landscape for these
peaks. The givens ofa problem restrict the search to the
portion of the space consistent with those givens. If the
problem is well-posed, exactly one oftllC global harmony
peaks will be accessible to the system. Given unlimited
search time, the system will provably end up at this peak:
This is the limit in which the perfOlmance theory is
governed by the cOlupetence theory. As the search time
is reduced, the probability of the system's not ending up
at the correct harmony peak increases. If insufficient
information is given in the problem", multiple global
hanuony peaks will be accessible, and the system will
converge to one of those peaks. If inconsistent informa
tion is given in the prohlem, none of the global harmony
peaks will be accessihle. But within the space of states
accessible to the network there will be higllest peaks of
harmony - these peaks are not as high as the inaccessible
global maxima; they correspond to network states repre
senting circuit states that satisfy as many as possible ofthe
circuit laws. As the network computes, it will converge
toward these best-available peaks.

Subsymbolic computation is the evolution ofa dynam
ical system. The input to the computation is a set of
constraints on which states are accessible to the system
(or, possibly, the state of the system at time zero). The
dynamical system evolves in time under its defining
differential equations; typically, it asymptotically ap
proachessome equilibrium state - the output. The func
tion relating the system's input to its output is its compe
tence theory. This function is extremely important to
characterize. But it is quite different from the perfor
mance theory of the system, which is the differential
equation governing the system's moment-to-moment
evolution. Relating the performance and competence of
cognitive systems coincides with one ofthe principal tasks
of dynamical systems theory: relating a system's local
description (differential equations) to its global (asymp
totic) behavior.

9.3. Conceptual-level spreading activation. In Section 7.2 it
was pointed out that states ofa subsymbolic model can be
approximately analyzed as superpositions of vectors with
individual conceptual-level semantics. It is possible to
~pproximately analyze connectionist dynaInical systems
at the conceptual level, using the mathematics of the
superposition operation. If the connectionist system is
purely linear (so tlmt the activity ofeach unit is precisely a
weighted sum ofthe activities ofthe units giving it input),
it can easily be proved that the higher-level description
obeys formal laws ofjust the san,e sort as the lower level:
The computations at the subconceptual and conceptual
levels are isomorphic. Linear connectionist systems are of
limited computational power, however; most interesting
connectionist systems are nonlinear. Nevertheless, most
ofthese are in fact quasilinear: A unit's value is computed
by taking the weighted sum ofits inputs and passing this



through a nonlinear function like a threshold or sigmoid.
In quasi-linear systems, each unit combines its inputs
linearly even though the effects ofthis combination on the
unit's activity is nonlinear. Furthermore, the problem
specific knowledge in such systems is in the combination
weights, that is, the linear part of the dynamical equa
tions; and in learning systems, it is generally only these
linear weights that adapt. For these reasons, even though
the higher level is not isomorphic to the lower level in
nonlinear systems, there are senses in whiCh the higher
level approximately obeys formal laws similar to the lower
level. (For details, see Smolensky 1986b.)

The conclusion here is a rather different one from the
preceding section, where we saw how there are senses in
which higher-level characterizations of certain subsym
boBe systems approximate productions, serial process
ing, and logical inference. Now what we see is that there
are also senses in which the laws describing cognition at
the conceptual level are activation-passing laws like those
at the subconceptual-level but operating between units
with individual conceptual semantics. Such semantic
level descriptions of mental processing (which include
local connectionist models; see note 3) have been of
considerable value in cognitive science. We can now see
how these "spreading activation" accounts of mental
processing can fit into the subsymbolic paradigm.

9.4. Schemata. The final conceptual-level notion I will
consider is that of the schema (e.g., Rumelhart 1980).
This concept goes back at least to Kant (1787/1963) as a
description of mental concepts and mental categories.
Schemata appear in many AI systems in the forms of
&'ames, scripts, or similar structures: They are pre
packaged bundles of information that support inference
in prototypical situations. [See also Arbib: "Levels of
Modeling of Mechanisms of Visually Guided Behavior"
BBS 10(3) 1987.]

Briefly, I will summarize work on schemata in Connec
tionist systems reported in Rumelhart, Smolensky, Mc
Clelland & Hinton (1986) (see also Feldman 1981; Smol
ensky 1986a; 1986c). This work addressed the case of
schemata for rooms. Subjects were asked to describe
some imagined rooms using a set of 40 features like has
ceiling, has-window, contains-toilet, and so on. Statistics
were computed on these data and were used to construct
a network containing one node for each feature as well as
connections computed from the statistical data.

The resulting network can perform inference of the
same general kind as that carried out by symbolic systems
with schemata for various types of rooms. The network is
told that some room contains a ceiling and an oven; the
question is, what else is likely to be in the room? The
system settles down into a final state, and among the
inferences contained in that final state are: the room
contains a coffee ClIp but no fireplace, a coffee pot but no
computer.

The inference process in this system is simply one of
greedily maximizing harmony. [Cf. BBS multiple book
review of Sperber & Wilson's Relevance, BBS 10(4).] To
describe the imerence ofthis system on a higher level, we
can examine the global states of the system in terms of
their harmony values. 4 How internally consistent are the
various states in the space? It's a 40-dimensional state
space, btlt various 2-dimensional subspaces can be se-
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lected, and the harmony values there can be graphically
displayed. The harmony landscape has various peaks;
looking at the features ofthe state corresponding to one of
the peaks, we find that it corresponds to a prototypical
bathroom; others correspond to a prototypical office, and
so on for all the kinds of rooms subjects were asked to
describe. There are no units in this system for bathrooms
or offices - there are just lower-level descriptors. The
prototypical bathroom is a pattern ofactivation, and the
system's recognition of its prototypicality is reflected in
the harmony peak for that pattern. It is a consistent,
"harmonious" combination offeatures: better than neigh
bOring points, such as one representing a bathroom
without a bathtub, which has distinctly lower harmony.

During inference, this system climbs directly uphill On
the harmony landscape. When the system state is in the
vicinity of the harmony peak representing the pro
totypical bathroom, the inferences it makes are governed
by the shape of the harmony landscape there. This shape
is like a schema that governs inferences about bathrooms.
(In fact, harmony theory was created to give a connec
tionis t formalization of the notion of schema; see Smol
ensky, 1984b; 1986a; 1986c.) Looking closely at the har
mony landscape, we can see that the terrain around the
"bathroom" peak has many of the properties of a bath
room schema: variables and constants, default values,
schemata embedded inside schemata, and even cross
variable dependencies, which are rather difficult to incor
porate into symbolic formalizations of schemata. The
system behaves as though it had schemata for bathrooms,
offices, and so forth, even though they are not really there
at the fundamental level: These schemata are strictly
properties of a higher-level description. They are infOr
mal, approximate descriptions - one might even say they
are merely metaphorical descriptions -, of an inference
process too subtle to admit such high-level descriptions
with great precision. Even though these schemata may
not be the sort ofobject on which to base a formal model,
nonetheless they are useful descriptions that help us
understand a rather complex inference system.

9.5. Summary. In this section the symbolic structures in
the intuitive processor have been viewed as entities in
high-level descriptions of cognitive dynamical systems.
From this perspective, these structures assume rather
different forms from those arising in the symbolic para
digm. To sum up:

(27) a. Macroinference is not a process of firing a symbolic
production but rather of qualitative state dlange in a
dynamical system, sudl as a phase transition.

b. Schemata are not large symbolic data structures but
rather the potentially intricate shapes of harmony
maxima.

c. Categories (it turns out) are attractors in connectionist
dynamical systems: states that "suck in" to a common
place many nearby states) like peaks of hannony
functions.

d. Categorization is not the execution of a symbolic al
gorithm but rather the continuous evolution of the
dynamical system - the evolution that drives states
into the attractors that maximize harmony.

e. Learning is not the construction and editing of for
mulae, but rather the gradual adjustment of connec
tion strengths with experience, with the effect of
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slowly shifting harmony landscapes, adapting old and
creating new concepts, categories, and schemata.

The heterogeneous assortment of high-level mental
structures that have been embraced in this section sug
gests that the couceptual-levellacks fonnaluuity. nlis is
precisely what O~Ie expects of approximate higher-level
descliptious, which, capturiug differeut aspects of global
properties, can have quite different characters. Accord
iug to the subsymbolic paradigm, the uuity underlying
cognition is to be found uot at the conceptual level, but
rather at the subconceptuallevel, where relatively few
principles in a single formal framework lead ~o a rich
variety of global behaviors.

10. Conclusion

In this target article I have not argucd for the validity ofa
connectionist approach to cognitive modeling, but rather
for a particular view of the role a connectionist approach
might play in cognitive science. An important question
remains: Should the goal of connectionist research be to
replace other methodologies in cognitive science? Here it
is important to avoid the confusion discussed in Section
2. I. There I argued that for the purpose of scieuce, it is
sound to formalize knowledge in linguistically expressed
laws and rules - but it does uot follow therefore that
knowledge in an iudividual's mind is best formalized by
such rules. It is equally true that even ifthe knowledge in
a native speaker's mind is well formalized by a huge mass
ofconnection strengths, it does not follow that the science
of language should be such a set of uum bers. au the
contrary, the argumeut of Sectiou 2.1 implies that the
science of language should be a set of linguistically ex
pressed laws, to the maximal extent possible.

The view that the goal ofconnectionist research should
be to replace other methodologies may represent a naive
form of eliminative reductionism. Successful lower-level
theories generally serve not to replace higher-level ones,
but to enri.ch them, to explain their successes and
failures, to fill in where the higher-level theories are
inadequate, and to uuify disparate higher-level accouuts.
The goal ofsubsymbolic research should not be to replace
symbolic cognitive science, but rather to explain the
strengths and weaknesses of existiug symbolic theory, to
explain how symbolic computation can emerge out of
nonsymbolic computation, to enrich conceptual-level re
search with new computational concepts and techniques
that reflect au uuderstandiug of how conceptual-level
theoretical constructs emerge from subconceptual com
putation, to provide a uniform subconceptual theory from
which the multiplicity of conceptual theories can all be
seen to emerge, to develop new empirical methodologies
that reveal subconceptual regularities ofcognitive behav
ior that are invisible at the conceptual level, and to
provide new subconceptual-Ievel cognitive principles
that explain these regularities.

The rich behavior displayed by cognitive systems has
the paradoxical character of appearing on the one hand
tightly governed by complex systems of hard rules, and
on the other to be awash with valiance, deviation, excep
tiou, and a degree offlexibility and fluidity that has quite
eluded our attempts at simulation. Homo sapiens is the
rational animal, with a mental life ruled by the hard laws
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oflogic - but real human behavior is riddled with strong
nonrational tendencies that display a systematicity of
their own. Human language is an intricate clystal defined
by tight sets of intertwining constraints - but real lin
guistic behavior is remarkably robust under deviations
from those constraints. nlis ancient paradox has pro
duced a deep chasm iu both tile philosophy and the
science of mind: on one side, those placing the essence of
intelligent behavior in the hardness of mental compe
tence; on the other, those placing it in the subtle softness
of human pmformance.

The subsymbolic paradigm suggests a solution to tllis
paradox. It provides a formal framework for studyiug how
a cognitive system can possess knowledge which is funda
mentally soft, but at the same time, under ideal circum
stances, admit good higher-level descriptions that are
undeniably hard. 'TIle passage from the lower, subcon
ceptual level of aualysis to the higher, conceptual level
naturally and inevitably introduces changes in tlIe char
acter of the subsymbolic system: The computation that
emerges at the higher level incorporates elements with a
nature profoundly different from that of the fuudamental
computational processes.

To turn this story into a scientific reality, a multitude of
serious conceptual and technical obstacles must be over
come. The story does, however, seem to merit serious
consideration. It is to be hoped that tile story's appeal will
prove sufficient to sustain the intense effort tlIat win be
required to tackle the obstacles.

ACKNOWLEDGMENTS
I am indebted to Dave RumeIhart for several years of
provocative conversations on many ofthese issues; his contribu
tions penneate the ideas fonnulated here. Sincere thanks to
Jerry Fodor and Zenon Pylyshyn for most instructive conversa
tions. Comments on earlier drafts from Geoff Hinton, Mark
Fanty, and Dan Lloyd were very helpful, as were pointers from
Kathleen Akins. Extended comments on the manuscript by
Georges Rey were extrelnely helpfuL I am particularly grateful
for a number of insights that Rob Cummins and Denise Del
larosa have generously contributed to this paper.

This research has been supported by NSF grant IST-8609599
and by the Department of Computer Science and Institute of
Cognitive Science at the University of Colorado at Boulder.

NOTES
1. hl this target article, when interpretation is used to refer

to a process, the sense intended is that ofcomputer science: the
process of talctng a linguistic description of a procedure and
executing that procedure.

2. Consider, for example, the connectionist symposium at
the University of Geneva held Sept. 9, 1986. The adverti<;ed
program featured Feldman, Minsky, Rumelhart, Sejnowski,
and Waltz. Of these five researchers, three were major contrib
utors to the symbolic paradigm for many years (Minsky 1975;
Rumelhart 1975; 1980; Waltz 1978).

3. This is an issue that divides connectionist approaches.
"Local connectionist models" (e.g., Den 1985; Feldman 1985;
McClelland & Rumelhal-t 1981; Rumelhart & McClelland 1982;
Waltz & Pollack 1985) accept (9), and often deviate significantly
from (8a). This approach has beel) championed by the Rochester
connectionists (Feldman et aL 1985). Like the symbolic para
digm, this s'chool favors simple semantics and more complex
operations. The processors in their networks are usually more
powerful than those allowed by (8); they are often like digital
computers running afew lines ofsimple code. ("If there is a 1on
this input line then do X else do Y," where X and Y are quite
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different simple procedures; e.g., Shastri 1985.) This 'style of
connectionism, quite different from the subsymbolic style, has
much in common with techniques of traditional computer sci
ence for "parallelizing" serial algorithms by decomposing them
into routines .that can run in parallel, often with certain syn
chronization points built in. The grain size of the Rochester
parallelism, although large compared to the subsymbolic para
digm, is small compared to standard parallel programming: The
processors are allowed only a few internal states and can trans
mit only a few different values (Feldman & Ballard 1982).

4. As indicated in the introduction, a sizeable sample of
research that by and large falls under the subsymbolic paradigm
can be found in the books, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Rumelhart,'"
McClelland, and the PDP Research Group 1986; McClelland,
Rumelhart, and the PDP Research Group 1986. While this work
has since come to be labelled "connectionist," the tem1 "PDP"
was deliberately chosen to distinguish it from the localist ap
proach, which had previously adopted the name "connec
tionist" (Feldman & Ballard 1982):

5. The phrase is Roger Schank's, in reference to "parallel
processing" (Waldrop 1984). Whether he was referring to conR

nectionist systems I do not know; in any event, I don't mean to
imply that the grounds for his comment are addressed here.

6. In this section the disclaimer in the introduction is particu
larly relevant: The arguments I offer are not intended to repre
sent a consensus among connectionists.

7. For example, two recently discovered learning rules that
allow the training of hidden units, the Boltzmann machine
learning procedure (Hinton & Sejnowski 198330) and the back
propagation procedure (Rumelhart, Hinton & Williams 1986),
both involve introducing computational machinery that is moti
vated purely mathematically; the neural counterparts of which
are so far unknown (unit-by-unit connection strength symme
try, alternating Hebbian and antiHebbian learning, simulated
annealing, and backwards error propagation along connections
of identical strength to forward activation propagation).

8. A notable exception is Touretzky and Hinton 1985.
9. Furthermore, when a network makes a mistake, it can be

told the correct answer, but Rcannot be told the precise rule it
Violated. Thus it must assign blame for its error in an undirected
way. It is quite plausible that the large amount of training
currently required by subsymbolic systems could be signifi
cantly reduced if blame could be focused by citing violated
rules.

10. There is a trade-off between the number of goal condi
tions one chooses to attribute to a system, and the correspond
ing range of tolerable environmental conditions. Considering a
large variety of environmental conditions for a river, there is
only the "How downhill" goal; by appropriately narrowing the
class of conditions, one can increase the corresponding goal
repertoire. A river can meet the goal ofcarrying messages from
A to B, if A and B are appropriately restricted. But a homing
pigeon can meet this goal over a much greater variety of
situations.

II. Consider a model that physicists like ,to apply to "neural
nets" - the spin glass (Toulouse et al. 1986). Spin glasses seem
relevant because they are dynamical systems in which the
interactions of the variables ("spins") are spatially inhomR

ogeneous. But a spin glass is a system in which the interactions
between spins are random variables that all obey the same
probability distribution p: The system has homogeneous inhom
ogeneity. The analysis ofspin glasses relates the properties of p
to the bulk properties ofthc medium as a whole; the analysis ofa
single spin subject to a particular set ofinhomogeneous interac
tions is regarded as quite meaningless, and techniques for such
analysis are not generally developed.

12. This problem is closely related to the localization of a
failure ofveridicality in a scientific theory. Pursuing tbe remarks
of Section 2.1, scientific theories can be viewed as cognitive

systems, indeed ones having the prediction goal. Veridicality is
a property ofa scientific theory as a whole, gauged ultimately by
the Success or failure of the theory to meet the prediction goal.
The veridicality of abstract representations in a theory derives
solely from their causal role in the accurate predictions of
observable representations.

13. For example, in both harmony theory and the Boltzmann
machine, discrete units have typically been used because (1)
discrete units simplify both analysis and simulation; (2) for the
quadratic hannony or energy functions that are being op
timized, it can be proved that no optima are lost by simplifying
to binary values; (3) these models' stochastic search has a
"jumpy" quality to it anyway. These, at least, are the computa
tional reasons for discrete units; in the case of the Boltzmann
machine, the discrete nature ofaction potentials is also cited as a
motivation for discrete units (Hinton et al. 1984).

14. Alternatively, if the original harmony/Boltzmann ap
proach is extended to include nonquadratic hannony/energy
functions, nonbinary optima appear, so again one switches to
continuous units (Derthick, in progress; Smolensky, in
progress). '

15. Note that these (procedural) "productions" that occur in
intuitive processing are very different from the (declarative)
production rules of Section 6 that OCC~lr in conscious rule
application.

Open Peer Commentary

Commentaries submitted by the qualified professional readership of
this journal will be considered for publication in a later issue as
Continuing CommentanJ on this article. Integrative overviews and
syntheses are especially enco!traged.

On the proper treatment of the connection
between connectionism and symbolism

Louise Antony and Joseph Levine
Department of Philosophy & Religion, North Carolina State University,
Raleigh, N. C. 27695

Smolensky is concerned to establisb two claims: first, that there
is a genuine conflict between the connectionist and the classical
computationalist (symbolic) approaches to the study of mind;
and second, that the conflict consists in a disagreement about
the level of analysis at which it is possible to obtain an accurate
and complete account of cognitive processing. These two
claims, we contend, are incompatible. If the difference between
connectionism and symbolism really concerns levels of theoriz
ing, then there is no incompatibility. If there is a genuine
conflict, then talk of alternative levels or degrees ofapproxima
tion is either misleading or wrong.

In Smolensky's picture, connectionism and symbolism share
a problem domain: They both seek to explain cognitive pro
cesses. Moreover, they both accept an initial analysis of the
problem domain effected at what Smolensky calls the concep
tual level. At this level, cognitive processes are characterized as
the operation of rules defined oVer representations. This level
provides a good approximation ofconscious cognitive processes,
and a passable aCcount ofintuitive processes. It is on the issue of
how to provide more precise accounts of intuitive processing
that the two paradigms diverge: The symbolists posit the same
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kinds of entities and mechanisms described at the conceptual
level; the subsymholists shift domains downward, to the sub
conceptual level, where neither the primitive entities nor the
basic operations map onto anything at the conceptual level.

But tlle nature of this downshift is obscure, and attempts to
elaruy it make problems for one or the other of Smolensky's
central clailns. One suggested mark ofa domain shift is seman
tic: a shift trom the consciously accessible concepts encoded in
natural language to finer-grained microfeatures. 1 But this
won't do; many paradigmatically symbolic cognitive theories
propose computational processes defined over elements of
both sorts. Indeed, the positing of unconscious manipulations
of elements with semantics unavailable to conscious introspec
tion is part and parcel of most symbolic cognitive accounts.
Decompositional semantics, for example, hypotllesized that
the semantic primitives of natural language (horse, kill) were
subconsciously decomposed into a set of conceptual primitives,
which included things SUell as categorized variables, or mark
ers like +inchoative, that few native speakers would own.
Phonology, which constructs morphemes out of phonemes and
phonemes out of phones, provides another exalnple. Any SUell
theory may be wrong (compositional semantics almost certainly
is) but each is symbolic par excellence.

The mark of a domain shift, therefore, cannot be purely
semantic. The other possibility is that a domain shift involves a
change in the kinds of mechanisms posited. This criterion
reveals a deep difference between the two paradigms. The
central mechanism of the symbolic paradigm is the structure
sensitive operation. Such mechanisms are posited at every
genuinely cognitive level of theorizing. In the connectionist
paradigm, however, structure-sensitive operations posited at
the conceptual level provide only a rough approximation of
actual cognitive processing. A full and accurate account can be
found only at the subconceptual level, where symbolic pro
cesses are replaced by numerical functions describing state
changes in a dynamical system.

We know that the theory of the ultimate physical implemen
tation ofany symbolic process will certainly need to hypothesize
nonsyntactic mechanisms. But Smolensky maintains that con
nectionism should not be regarded as simply an implementation
theory for symbolic paradigm theories. Connectionist theories,
unlike theories of implementation, are cognitive. Connec
tionism and symbolism offer two competing models of the same
cognitive capacities, models that posit strikingly diHerent mech
anisms to explain the input-output functions definitive of those
capacities.

The relation between the two paradigms, Smolensky argues,
is analogous to the relation betwecn classical and quantum
mechanics: The symbolic model gives an approximately true
description of the goings-on precisely ellaracterized by a mathe
matical description of the dynamical systems that actually run
intuitive cognitive processes. But there's the mb. Given the
radical difference between the mechanisms and mode of expla
nation posited by the symbolic and the connectionist paradigms,
what could it mean to say that, from a connectionist perspective,
a symbolic theory is even "approximately" true?

The symbolic paradigm claims to explain cognitive phe
nomena by hypothesizing the real existence ofstmctured repre
sentations, and operations defined over them. One thing it
could mean to say - that a symbolic model is only approximately
correct - is that the model is an -idealization, an abstract
characterization of a system, which, once physically realized, is
subject to glitches deriving from the physical nature of the
realizing medium. (Economic theories, for example, usually
assume higher quality hardware than is generally available.)
Alternatively, one could mean that the model describes only
one subsystem of a complex system, and thus cannot be used to
predict precisely the behavior of the whole. (This is our undcr
standing - contrary to Smolensky's - of the relation Chomsky
posits between linguistic competence and linguistic perfor-
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mance.) [See Chomsky: "Rules and Representations" BBS 3(1}
1980.]

What one shouldn't mcan is simply that the model gets the
input-output relations right. But if Smolensky is right, if con
ncctionist models are not models of the implementation of
symbolic processes, that's all it could mean to say that symbolic
theories are approximately true; for there are no structure
sensitive operations in reality, and there are no structured
constituents. Cognitive models are only correct (and then only
approximately so) in their mappings of inputs to outputs. Their
explanations of why those mappings hold are fantasy.

Smolensky's allowance that a sort ofconstituent structure can
be read into connectionist networks makes no difference. TIle
crucial question is whether that structure is implicated in the
explanation of cognitive processes or not. H it is not, then the
appearance of constituent structure is accidental and unex
plained, as indeed it ought to be given tIle nature of connec
tionist mechanisms. 2 H, on the other hand, constituent struc
ture is built into the operations of the network - if, say, the
initial connection strengths and learning functions serve to
ensure that constituency relations are respected in state transi
tions, then the organization of the networks is constrained by
the symbolic processes posited at the conceptual level. In that
case, the network would be simply an implementation of the
symbolic processes.

In sum: If the connectionist and symbolic paradigms are
indeed incompatible, it is because at the same explanatory level
they disagree fundamentally about the nature of mental pro
cesses. If, on the other hand, both models yield explanatory
insight into the workings of the mind, though at different levels
of description, then we must understand connectionist models
as implementation models. 3

NOTES
1. This criterion is suggested by Smolensky's remarks in sect. 3, para.

2; and also by the discl.lSsion of reduction and instantation in sect. 5,
para. 6.

2. Fodor and Pylyshyn develop this point in detail in "Connec
tionism and Cognitive Architecture: A Critical Analysis" (unpublished
manuscript). Smolensky explicitly addresses their arguments in sect.
7.1., but, in OlIT view, does not answer them adequately.

3. We would like to thank David Auerbach and Harold Levin for
helpful discussions of this paper.

Connectionism and interlevel relations

William Bechtel
Department of Philosophy, Georgia State University, Atlanta, Ga. 30303

Smolensky's proposal to treat connectionist models as applying
to an intennediate ("subconceptual" level) between neural
models and conceptual models is a very attractive one. I am
troubled, though, by the way he articulates the relation among
the three levels. There seem to be two different ways these
levels relate: The higher level may simply provide a more
abstract characterization of the lower level, or it may actually
constitute a higher level in a part-whole hierarellY. There are

.important differences betwecn these types of relationships. To
begin, one is a relationship between theories, whereas the other
represents an ontological distinction in nature which has conse
quences fur theorizing. I suspect that for Smolensky the rela
tionship between the neural and the subconceptual level is of
the first sort, and that between the subconceptual and the
conceptual level is of thc second ·sort. These types of rela
tionships, though, have different consequences.

Consider first the relation between neural and subconceptual
levels. Smolensky characterizes the connectionist models at the
subconceptual level as syntactically more like neural models but
semantically more like symbolic models. The reason they are
semantically more like symbolic models is that current neural
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theories lack an adequate semantic account. Below I shall claim
that any semantic account developed for the neurallevcl will
also be similar to that ofsymbolic accounts. The critical issues for
level relations arise on the syntactic side. There are a number of
differences, Smolensky notes, between the syntax of neural
processing models and that of connectionist models, and he
even comments that currently "architectural decisions [for con
nectionist systems} seem to be driven more and more by
mathematical considerations and less and less by neural ones"
(sect. 4, para. 9). These differences could support the claim that
we are dealing with different leyels of organization in nature.
But this raises the question: What do L'Onnectionist systems
model if not the activity of neuronal networks? There may be
units in the brain at a level above that ofneural networks which
fit the characteristics of the connectionist architecture better
than neural networks, but I do not see any rea<>on to expect this
result. Moreover, in his discussion ofhow models like NETtalk
can inform us of general characteristics of a wide dass of
systems, SmoJensky gives us reason to think that connectionist
accounts are simply more abstract and currently more tractable
than neural accounts. They may provide us with rea<>onably
accurate approximations of the actual performance of neural
networks, which will enable us to carry on with theorizing about
mental phenomena in the absence of detailed neural models.
Although I do not find this problematic, it does mean that
connectionist and neural theories (when developed in order to
understand cognitive performance) are characterizing the same
phenomena in nature. It may prove useful at a later stage in the
inquiry to amend connectionist models to better accommodate
knowledge of the nervous system, and then the distinction
between neural and cognitive models may largely disappear.

Now consider the relationship between connectionist and
symbolic models. Here we seem to be dealing with a genuine
part-whole relation. The interactions between the units in the
connectionist model give rise to roughly stable patterns, which
are then assigned the semantics ofconscious concepts (see thesis
8b). Smolensky discusses the relationships between connec
tionist and conceptual models in the same way he discussed the
relationship between neural and connectionist accounts - the
accounts are approximately equivalent. Moreover, for him it is
important that the agreement is only approximate and that
symbolic processes are not directly implementable in the sub
conceptual system (thesis 8c). What does this say about the
status of the conceptual level?

There are, as Smolensky notes at the beginning of the target
article, a variety ofhuman endeavors (particularly interr>ersonal
activities, such as scientific investigations) in which symbols and
conscious symbol manipulation are important. 1 If we take a
realist view of the symbols and symbol processing that occur in
these activities, we should expect them to be implemented·in
lower level activity: These symbols and symbol processing
activities should be the causal product of the processes at the
lower level and thus implemented by the lower level processes.
But thesis Bc says that these symbolic processes are not directly
implementable, so how do they occur? Are they real processes
in nature? It is this which seems to make connectionism a
version of eliminative materialism.

There is a way to adopt both this realistic view ofthe relation
of explanatory aCcounts at different levels and Smolensky's
thesis Bc. In most genuine interlcvel relationships in science,
study at one level tends to guide revision in theorizing at the
other level. Ifthis were to happen in the current case, we should
expect work on the subconceptuallevel to lead to revisions in
our understanding of the conceptual level. Thesis Bc should
then be viewed as applying to current symbolic accounts, not to
the accounts revised in light of work at the subconceptuallevel.
One example of the changes that might result is a revision in the
view of the concepts that figure in conscious thinking as fixed,
stable units that are stored in memory and retrieved into
working memory where they are manipulated by rules.

Connectionism m"y lead us to view concepts as fur more
temporary patterns, which change over time as a result of
learning or other activity in the system. (Barsalou, 1986 and in
press, has already produced evidence ofa variability in concepts
that would fit such an analysis.) Thus, if the relation of the
subconceptual to the symbolic is really an interlevel one, we
should not treat one account as simply a rough approximation of
the other, to be surrendered if we develop a better approxima
tion, butwe should view the accounts as descriptions ofdifferent
phenomena related in apart-whole manner, with the goal being
a causal explanation of the higher level phenomena in tenns of
the lower (Bechtel 1988).

In closing I wish to retum to something I noted above: One
reason connectionist accounts are very like conceptual-level
accounts semantically is that any semantic account (even one at
the neural level) will be quite similar to that at the conceptual
level. We can sec this by considering Smolensky's briefremarks
about the semantics of the subconceptual level. Our semantic
interpretations of processes in a system at any level depend on
how those processes enable the system to mcet its environmen
tal goals. Interpretations of this Sort can provide the intentional
perspective for the subconceptuallevel that Smolensky earlier
suggests is lacking for connectionist systems. To capture what is
often viewed as a defining feature of intentional systems - the
ability of their states to be about nonexisting phenomena - we
need to bear in mind that no such system is perfectly adapted to
its environment any more than any organism is; our intentional
interpretation of its states will also havc to show how it fails to
satisfY its environmental goals (Bechtel 19B5).

NOTE
L My concern is only with conscious rule processing, not with

Intuitive processing. The study of the latter, forwblch rule-processing
accounts have been generally inadequate, should perhaps be tranS
ferred to the subconceptual level.

Two constructive themes

Richard K. Belew
Computer Science and Engineering Department, University of California at
San Diego, La Jolla, Calif. 92093

Connectionism is definitely hot these days, and one of the
obvious questions is how these models relate to previous ones.
With this target article, Smo[ensky clearly pushes the debate to
the next plateau. He argues that there is an important, valid
level of cognitive modeling below the conventional symbolic
level yet above the level of neural modeling. Ifhis paper has a
flaw, it is that Smolensky spends more time rhetorically delin
eating how his subsymbolic models are not either symbolic or
neural, rather than constructively emphasizing those charac
teristics that make subsymbolic models important and valid. He
docs mention some of these characteristics as subthemes, how
ever, and I think it is worth emphasizing two in particular.

One of Smolensky's first distinctions is betwecn cultural and
individual knowledge. Individual knowledge, that information
used by a single person to help him function in the world, has
typically been the provcnance of cognitive science. Smolensky
identifies a second type of cultural knowledge that groups of
people collectively codifY, share, learn, and usc. He also makes
the strong claim (his point 2b) that "We can view the top-level
conscious processor of individual people as a virtual machine 
the conscious mlc interr>reter - and we can view cultural
knowledge as a program running on that machine" (sect. 2.1.,
para. 4). Smolensky then argues that the symbolic tradition in
cognitive science - because of its prcoccupation with cognitive
processes of which we are consciously aware - has come to
model the form of cultural rather than individual knowledge.
After noting that "the constraints on cultural knowledge for-
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malization are not the same as those on individual knowledge
formalization," Smolensky then infers that a large body of
subconscious cognitive phenomena is ripe for subsymbolic
modeling.

Two observations about this argument should be made. First,
we can accept the importance of Smolensky's distinction be
tween cultural and individual knowledge witllout accepting this
particular view of their relationship. I too have argued for the
importance of cultural knowledge to cognitive science (Belew
1986, Ch. 8), but although Smolensky's hypothesis regarding
the conscious rule interpreter is intriguing it is currently also
unsubstantiated and, I fear, oversimplified.

Second, Srnolensky fails to draw an important conclusion
from this argument, namely, that subsymbolic models have a
distinct disadvantage to symbolic ones in that they cannot easily
be assimilated into the cultural knowledge acquisition process
known as science. There is bound to be a bias on the part of
unwary cognitive scientists toward "linguistic," symbolic mod
els simply because these are more easily communicated from
?n~ sci.en~~t to another and hence easily considered more

sCJenhfic.
Subsymbolic models rest on the assumption that some of the

most interesting cognitive phenomena cannot be modeled in
terms ofsymbol manipulation (Smolensky presents this as point
7c); that is, the rejection of Newell's Physical System Hypoth
esis (1980) (whieh Smolensky effectively restates as his straw
man point 3a). These models must therefore be stated in non
linguistic terms, typically mathematical analyses, that are much
more difficult for most cognitive scientists to appreciate. Such a
bias is understandable, but if we want at least to allow for the
possibility of subsymbolic models that cannot be expressed in
easily understood symbols, we must be willing to dig in and
understand the mathematics.

Luckily, one of the reasons for the current connectionist
renaisSailCe is that Smolensky and others have fuund new ways
to make their mathematics more comprehensible. In particular,
a key characteristic of these models is that they explore ways in
which the dynamic rather than the structural characteristics ofa
system can contribute to intelligent behavior. This is a second
critically important subtheme of Smolensky's analysis.

It seems quite obvious that AI and cognitive science would
not be here if not for the COOlputer. More insidious is the way
our models of cognition have suffered as a result of the "von
NeUJnann bottleneck" ofsequential computation, imposed until

. very recently by existing computers. Of course, Newell and
others have argued forcibly for the need to describe cognition as
a basically sequential process (primarily because all cognitive
systems must act in the sequential flow of time), but the
correspondence between their sequential simulations and the
availability of only sequential von Neumann computers is a bit
too neat to bc coincidental.

One of the Inost striking feat~resofsequential models is their
particularly simple dynamics: One thing happens at a time, and
at one place. Using only this spare dynamic model, cognitive
models and AI knowledgc representations have focused on
building elaborate structural systems. We have come to believe
that building more intelligent systems means designing their
knowledge structures more effectively.

One of connectionism's most distinctive features is that it
views the dynamics of the cognitive system as just as important
as its structure. In fact, by current knowledge representation
standards, connectionist nets are particularly simple: weighted
digraphs. How could this simple representation support intel
ligent behavior when we still have problems getting our most
sophisticated semantic networks to work! The connectionist
answer is that the current division between structure and
dynamics is inappropriate. Much of our cognitive activity can
and should be described in dynamical tenns (the spreading of
activation, the modulation ofactivity, etc.) and our models'must
be dynamically sophisticated as well.
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I believe it is no coincidence that two of the most outspoken
proponents ofsubsymbolic models, Smolensky and Hofstadter,
were trained originally in physics, a science in which the
structure and dynamics of systems are inextricably linked. A
major conbibution of these scientists has been to bring, trom
physics, the descriptive language ofdynamical systems. This has
begun to allow us to constructively model (and describe to other
scientists) dynamical properties ofour models that would other~

wise be beyond our grasp.
It is important not to take Smolensky and connectionism too

literally. Smolensky's "connectionist dynamical system" hy
pothesis (his point 7a) assumes a particular structural represen
tation, a weighted digraph with a vector of activitics, but many
of tIle strengths and weaknesses of this computational system
are exllibitcd by other representations, for example Holland's
Classifier System (Holland et al. 1986). The Classifier System
uses a representation, derived from production rules, that
cannot be called connectionist but that is properly considered
subsymbolic. A careful compaIison of these two representations
would not be appropriate here; I simply note that both repre
sentations embrace complex dynamic processing as an integral
part of their operation. From the perspective of these newer
representations, a key issue separating sequential, symbolic
accounts from dynamical, subsymboIic ones is how sequential
action emerges from parallel cogitation.

Smolensky's target article obviously does not answer this
ambitious question; his purpose is simply "to fonnulate rather
than argue the scien tiflc merits ofa connectionist approacll." He
has succeeded ably at outlining some basic tenets of subsym w

bolie cognitive modeling, and the stage is now set for further
debate.

Information processing abstractions: The
message still counts more than the medium

B. Chandrasekaran, Ashok Gael, an~ Dean Allemang
Laboratory for Artificial Intelligence Research, Department of Computer
and Information Science, Ohio State University, Columbus, Ohio 43210

Smolensky's target article has two major virtues. First, it is a
very clear presentation of the essential commitments ofconnec
tionism in the subsymbolic paradigm. Second, his claims on its
behalf are relatively modest: He identifies one level, viz. the
subconceptual level, as the appropriate province for connec
tionisin, while leaving other levels as tlle domains for other
kinds of theories. We find ourselves in agreement with Smol~

ensky on several counts:
A satisfactory ac{.'ount of cognitive phenomena has to be

representational.
SubsYlllbolic models are not merely implementations of sym

bolic models just because continuous functions can be simulated
by Turing machines. As one of us argues in Chandrasekaran
(1988), connectionist and symbolic methods of computing a
function may make significantly different representational com
mihnents about what is being represented, and thus may con
stitute different theories about an information process.

Finally, theories which use only conceptual entities accessi
ble to the conscious level are likely to be inadequate to cover the
range ofphenomena in cognition. In fact, we regard much of the
work on knowledge representation in the logic paradigm, where
"thinking" is closely associated with the phenomena and mecha
nisms of conscious reasoning, as suffering from this problem.

However, Smolensky is not making enough of a distinction
between what is being computed and the mechanisms of that
computation. It is true tllat connectionism offers a medium of
representation and mechanisms of processing different from
those of the traditional symbolic paradigm. We believe, howev
er, that computational leverage is more in the content of repre-
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sentation than in the representational medium or processing
mechanism. In this we follow Man-'s (1982) proposal for an
infonnation processing (IP) level description of a theory, that
specifies three kinds of information: (1) what is available at the
input to a process, (2) what is needed at the output, and (3) what
are the kinds of information that need to be made available as
part of the process, The content of the theory is this set of
information processing abstractions by means ofwhich the input
can be transfonned to the output. Commitments about how
these abstractions are represented and processed are made at
the next level, where a number of symbolic or connectionist
alternatives may be proposed. In contrast to Smolensky's pro
posal about how to carve up the competence/performance
distinction, we suggest that the competence is represented by
the IP abstraction level, and connectionist networks or symbolic
algorithms are alternate realizations of this theory, leading to
possible differences in the details of perfonnance.

Viewed in this light, what is significant about the two tense
learning examples contrasted by Smolensky is that they propose
different sets orI P abstractions: One set seems too close to the
conscious level to be quite right, while the other proposes
abstractions (e.g., "rounded") that are genuinely theoretical
constructs and not consciously accessible. Good theories of
complex phenomena are apt to involve primitives which are not
accessible to naive consciousness. This is no less true of cogni
tion than it is ofphysics. Uthe connectionist theoryofleaming of
tense-endings has good performance, it is due as much to the
particular IP abstractions that are represented in it as it is due to
the medium ofrepresentation and the mechanisms. The issue of
whether the primitive objects are close to consciousness is
orthogonal to whether they are represented and manipulated
connectionistically or algorithmically. Smolensky's conflation of
these two issues is a special case of the general instance,
common to all stripes of AI, of ascribing credit to mechanisms
when quite a bit of it has to go to the IP theory that is being
realized by the mechanisms. Forinstance, the content contribu
tions of many nominally symbolic theories in AI are really at the
level orIP abstractions to which they make a commitment, and
not at the level of their implementation in a symbol structure.
Symbols have often merely stood in fOr the abstractions that
need to be captured one way or another. Note that we are not
claiming that the medium of representation and manipulation
does not make for important differences, but that attribution of
the differences to the medium requires first an analysis of the
role played by the IP abstractions.

Ofcourse, ifcon nectionism can proVide learn ing mechanisms
such that an agent can start out with few such abstractions and
can learn to perform the IP function in a reasonable amount of
time, then connectionism can sidestep most of the representa
tional problems. The fundamental problem ofcomplex learning
is the credit (or blame) assignment problem, which Smolensky
admJts is very hard, but then somewhat startlingly claims has
been largely solved by connectionism. However, ifone looks at
particular connectionist schemes that have been proposed for
learning tasks, a significant part of the IP abstractions are built
into the architecture in the choice of input, feedback directions,
allocation of subnetworks, and the semantics that underlie the
choice oflayers, and so on. The inputs and the initial configura
tion incorporate a sufficiently large part of the requisite IP
abstractions which constrain the search space, so that what is left
to be learned, while nontrivial, is proportionately small. In fact,
the search space is small enough so that statistical associations,
for which connectionist learning mechanisms are particularly
suited, can do the trick. This is not to downplay the contribu
tions of the various propagation schemes, but to emphasize the
role of the IP abstractions implicit in the networks even before
the learning mechanisms begin to operate. In short, while
connectionist mechanisms may be able to explain how learning
can be accomplished as a series of searches in appropriate
parameter spaces, they do not absolve the theorist of the

responsibility to provide sufficient content to the theory in the
form of a priori commitments made by the architecture.

Smolensky's conscious/intuitive and symbolic/connectionist
distinctions again are orthogonal. Theory making wi th entities at
the conscious level alone is not a problem of symbolic theories
per se. For example, Schank's (1972) Conceptual Dependency
theories and our own work on generic tasks in problem solving
in Chandrasekaran (1987), both of which do not correspond to
the terms in conscious reasoning. A major task of cognitive
theory making is finding tile right set of primitive terms, con
scious, intuitive, or otherwise, that need to be represented.
This task doesn't change, whether or not nne's approach is
connectionist.

We regard connectionism as an important corrective to the
extreme view of the cognitive processor as nothing but a Turing
machine. Connectionism offers intriguing insights into how
some objects in symbolic theories, such as frames and schemas,
may be composed at "run-time" from more diffuse connectionist
representations. Our perspective on how the symbolic para
digm and connectionism coexist is a little different from that of
Smolensky. Connectionist and symbolic computationalist phe~
nomena have different but overlapping domains. Connectionist
architectures seem to be especially good in providing some basic
functions, such as retrieval, matching an,d low-level parameter
learning, with intuitively de$iirable "micro" performance fea
tures such as speed and softness. Symbolic cognitive theories
can take advantage of the availability of connectionist realiza
tions of these functions in order to achieve greater fidelity in
their modeling. Even here, the content theories have to be done
just right for the mechanisms to work. For example, in retrieval,
the basic problem will remain encoding of objects in memory
with appropriate indices, except that now the representation of
these encodings and the retrieval of the relevant objects may be
done in the connectionist framework.

Much of cognitive theory making will and should remain
largely unaffected by connectionism. We have given two rea
Sons for this. First, most of the work is in coming up with an
information processing theory in the first place. Second, none of
the connectionist arguments or empirical results have shown
that the symbolic, algorithmic character of a significant part of
high level thought, at least in the macro level, is either a
mistaken hypothesis, purely epiphenomenal, or simply
irrelevant.

ACKNOWLEDGMENT
We acknowledge the support of the u.s. Air Force Office of Scientific
Research (AFOSR-87-0090), and the u.s. Defense Advanced Re~earch

Projects Agency (RADC-F30602-85-C-OOIO).

Is Smolensky's treatment of connectionism
on the level?

Carol E. Cleland
Department of Philosophy and Institute of Cognitive Science, University of
Colorado, Boulder, Colo. 80309

In his very interesting target article, Smolensky remarks that
"most of the foundational issues surrounding the connectionist
approach turn, in one way or another, on the letlel of analysis
adopted" (sect. 1.3., para. 1). From a philosophical point of
view, one of the main novelties of Smolensky's PTC (proper
treatment of connectionism) approach is the introduction of a
new level for the analysis of cognition; in addition to the
traditional conceptual and neural levels, there is the subconcep
tuallevel. Smolensky's claim is that the complete fonnal account
of cognition lies at this (the subconceptual) leveL

In exactly what sense is the subconceptuallevel supposed to
be the more fundamental level for the analysis of cognition?
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Smolensky explicitly likcns the relationship between sym
bolic accounts of cognition (which adopt the conceptual level of
analysis) and subsymboJic accounts of cognition (which adopt
the subconceptuallevel ofanalysis) to the relationship bctween
macrophysical accounts of physical phenomena and micro M

physical accounts of physical phenomena, for example, the
relationship of classical mechanics to quantum mechanics, the
relationship of classical thermodynamics to statistical ther
modynamics (sect. 5, para. 11). The idea is that just as classical
mechanics accurately describes the macrostructure of physical
reality and quantum mechanics accurately describes tile micro
structure of physical reality, so symbolic. models accurately
describe the macrostructure of cognition and subsymbolic mod
els accurately describe the microstructure of cognition. He
concludes that symbolic accounts are "reducible" to suhsym
bolic accounts in the same sense that microphysics is "reduci
ble" to l11acrophysics. This, then, appears to be the sense in
which the subconceptual level is supposed to be morc funda
mental than the conceptual level: Just as rocks and chairs are
nothing more than collectimls of elementary particles (elec
trons, neutrons, etc.) and the forces between them, so cognition
is nothing more than the activities of individual processing units
in connectionist networks.

The problem is that the manner in which macrophysics is
reducible to microphysics is not at all obvious. As traditionally
construed, reducibility involves biconditional correlations
(based on definition or law) between every reduced property
and some reducing property. Unfortunately, despite the fact
that many people are committed to the notion that Inicrophysics
is more fundamental than macrophysics, nO one has becn able to
state any biconditional bridge laws which will actually effect the
reduction of macrophysical properties to microphysical proper
ties. In the absence of such laws it is very hard to see how the
claim that the microphysical is more fundamental than the
macrophysical can be justified. Indeed this state ofaffuirs has led
some philosophers to conclude that microphysics is not the
more fundamental science (Horgan 1982). In any case, it is not at
all obvious that likening the relationship of the symbolic to the
subsymbolic to the relationship of the macrophysical to the
microphysical will shed much light on how the symbolic is
supposedly reducible to the subsymbolic.

Moreover, even supposing that the symbolic is reducible to
the subsymbolic in the way that Smolensky suggests (that
concepts literally am patterns over large numhers of subsym
bois), it wouldn't automatically follow that the subconceptual is
the correct level of explanation for cognitive phenomena. For,
as PublUm (1980) has taught us, the correct level of explanation
for a phenomenon is not always the same as the level of the basic
entities which constitute the phenomenon. To use Putnum's
well-worn example, an explanation of the fact that a cubical peg
(one-sixteenth ofan inch less t;han one inch wide) passes through
a squarc hole (one inch wide) and not a round hole (one inch in
diameter) is not to be found in the laws ofparticle mechanics and
electrodynamics even if it is in some sense deducible from these
laws. Rather, an explanation of the fact in question is to he found
in certain laws of classical mechanics and geometry, viz., the
board (with the holes in it) and the peg are rigid, the square hole
is bigger than the peg, and the round hole is smaller than the
peg. That is to say, higher level structures sometimes come
under laws that are, in effect, autonomous from the laws de
scribing their microstructure. This, of course, is exactly what
Fodor (1975) and fellow travelers have in mind when they argue
for the autonomy of the psychological (conceptual level). The
upshot is that even supposing that the symbolic is reducible to
the subsymbolic, the correct level for psychological explanation
may not be at the level adopted by the suhsymbolic paradigm
(the subconceptuallevel). This in tum suggests that the subsym
bolic account of cognition may be quite compatible with the
symbolic account of cognition.

Smolensky denies thiS, however: He explicitly maintains the
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incompatibility of the symbolic and subsymbolic accounts of
cognition. This suggests that he has in mind a notion of reduc
tion which is much stronger than that reputed to hold between
macrophysics and microphysics. For there must be a sense in
which the higher conceptual level doesn't matter - a sense in
which cognition can be completely explained away'in terms of
patterns of activity over large numbers of subsymbolic entities.
In short, the claim that the subconceptuallevel is more funda
mental than the conceptual level really amounts to the claim
that there arc no autonomous facts about cognition above the
conceptual level.

This brings us to the relationship ofthe subconceptuallevel to
the neural leveL According to Smolensky, the relationship of
the subsymholic to the neurophysiological is such that "the best
subsymbolic models of a cognitive process should one day be
shown to bc some reasonable higher-level approximation to the
neural system supporting that process" (sect. 4, para. 10).
Despite the fact that he does not mcntion it, this makes the
relationship bctwecn the subsymbolic and the neurophysi
ological sound as lUuch like the reputed relationship of the
macrophysical to the microphysical as docs the relationship of
the symbolic to the subsymholic. In this case, however, subsym
bolic models must be taken as describing the macrostructure of
(for lack ofa better word) subcognition (vs. the microstructure of
cognition) and neural models must be taken as deSCribing the
microstructure ofsubcogniHon. Nevertheless, when it comes to
the analysis of facts at the subconceptual level, the subconcep
tuallevel is supposed to be the more fundamental level. That is,
although the ultimate constituents of subconceptual structures
are neural, the correct level for explaining subconceptual facts
does not, according to Smolensky, lie at the neural level. This
does not seem to be an unreasonable position to hold - no more
so than Putnum's claim that one cannot explain facts about
square pegs and round holes in tenns of microphysics, even
though their ultimate constituents are microphysical.

Smolensky has in mind a claim that is much stronger than the
claim that the subconL'Cptual level is the correct level for the
analysis of subconceptual facts. He also believes that the sub
conceptual level is the correct level for the analysis ofconceptual
(psychological) facts. As I have urged, such a claim cannot be
justified by appealing to the reducibility of macrophysics to
microphysics. What Smolensky needs is a relationship of re
ducibility between the symbolic and the subsymbolic in which
the conceptual is not autonomous from the subconceptual. One
possibility would of course he to treat the symbolic as sonie sort
of logical construction out of the subsymbolic, much the same
way numbers are sometimes treated as logical constructions out
of sets. In the absence ofa clearer understanding of "units" and
"weights" (the hasic subsymbolic entities), I cannot imagine
what such an account would look like. However [ fear it would
come up against all the difficulties which have traditionally
affiicted attempts (such as those of the logical behaviorists) to
ground identities for mental entities in logic and set theory. In
any case, until an account of the exact nature of the "reduction"
of the symbolic to the subsymbolic is at least adumbrated, it is
very difficult to evaluate the promise of PTC for philosophy of
mind and cognitive science.

The psychological appeal of connectionism

Denise Dellarosa
Psychology Department, Yale University, New Haven, Conn. 06520

The appeal ofconnectionism has its roots in an idea that will not
die. It is an "idea that was championed by Berkeley, Hume,
William James, Ebbinghaus, and (in a different form) the entire
behaviorist school of psychology. Put simply, this idea is that
cognition is characterized by the probabilistic construction and
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activation of connections (or associations) among units: ideas
(Hume), habit!> (James), words (Ebbinghaus), or stimulus-re
sponse pairs (behaviorism). It is also an idea that is represented
in Smolensky's target article, albeit in distributed fashion.

The British empiricists and early American psychologists took
great care to describe the essence ofcognition as the building of
associations through experience: Events that co-occur in space
or time bemme connected in the mind. Events that share
meaning or physical similarity become associated in the mind.
Activation of one unit activates others to which it is linked, the
degree of activation depending on the strength of association.
This approach held great intuitive appeal for investigators of the
mind because it seemed to capture the flavor of cognitive
behaviors: When thinking, reasoning, or musing, one thought
reminds us of others.

Historically, the crux of the issue has been whether these
associations can be fonnalized best as a chain of pattern-action
pairs linked together through inference (e. g., GPS: Newell &
Simon 1972; Logic Theorist: Newell et al. 1958), or as a network
whose units can be activated in parallel (e.g., Pandemonium:
Selfrid~e 1959; HEARSAY, Reddy et al. 1973). Although sym
bolic nile-based models have had great success, thcre is a sense
in which psychologists have never been quite satisfied with
them as models of cognition, often turning them into hybrid
models that include spreading activation networks (e.g., ACT*).
[See Anderson: "Methodologies for Studying Human: Knowl
edge" BBS 10(3) 1987.] Practically, as Smolensky points out,
these models tend to suffer from an unwanted "brittleness":
"best guesses" are difficult to achieve, and stimulus "noise" can
bring operations to a grinding halt. Gone is the fluidity that
flavors the human cognitive functioning observed in life and
laboratory.

This is not to say, however, that symbolic models ofcognition
are worthless Or simply false. Indeed, Smolensky is, I believe,
right on target when he states that connectionist models stand to
symbolic ones as quantum mechanics stands to classical me
chanics. Just as the behavior of a physical system can be de
scribed using both classical and quantum tenns, so too can the
behavior of a cognitive system be described by both symbolic
and connectionist models. In neither case, however, is the
lower-level description a mere expansion of the higher, nor can
a one-to-one mapping of constructs between the two be made.
Moreover, just as quantum th~ory changed our thinking about
the nature ofphysical systems and their fimdamental processes,
so too, I believe, are connectionist models challenging and
changing our ideas about the nature of fundamental cognitive
mechanisms. The most telling example is the treatment of
inference by the two frameworks. It is a beliefofmany cognitive
scientists (most notably, Fodor 1975) that the fundamental
process of cognition is inference, a process to which symbolic
modelling is particularly well suited. ·While Smolensky points
out that statistical inference replaces logical inference in con
nectionist systems, he too continues to place inference at the
heart of all cognitive activity. I believe that something more
fundamental is taking place. In most Connectionist models, the
fundamental process of cognition is not inference, but is instead
the (dear to the Ilearts of psychologists) activation of associated
units in a network. Inference "emerges" as a system-level
interpretation of this microleve! activity, but ~ when represen
tations are distributed - no simple one-to-one mapping of
activity patterns to symboIs and inferences can be made. From
this viewpoint, the fundamental process of cognition is the
activation of associated units, and inference is a second-order
process.

Certain connectionist models also challenge our understand
ing of cognition by representing symbols not as static data
structures, but as activation patterns that OCCur momentarily at
run time. Such dyn:.unic, distributed instantiations of symbols
hold great promise for the much~hopecl-formarriage of cog
nitive science to neuroscience. For, although Smolensky takes

great pains to explain that connectionist networks, as they
presently stand, do not represent neural networks, it is exactly
this type of distributed representation scheme that may be
needed to explain how, for example, the same groups ofneurons
can be used to store a variety of memories in the brain.

Smolensky also discusses the r:.unifications of representing
symbols in a distributed fashion in his reply to Pylyshyn (1984),
suggesting that dccontextualized symbols are a rarity - or
impossibility - in connectionist models. This tends to give the
knowledge encoded in connectionist networks a decidedly epi
sodic flavor, a characteristic with great psychological signifi
cance. Much has been made in the psychologicalliterarure of
the semantic knowledge/episodic knowledge distinction, where
semantic knowledge is knowledge that is free of one's personal
history. In reality, it is often difficult to uncover such demntex
tualized knowledge. Subjects' retrieval of facts are often spon
taneously augmented by unbidden personal memories, such as
when a fact was first learned, from whom it was learned, etc.
Human knowledge seems to be cut from whole cloth, with fact
and context inextricably interwoven.

The proof, however, still remai~s in the perfonnance of these
models as predictors of human behavior. As in the case of
quantum versus classical mechanics, connectionist models must
demonstrate a greater degree of precision and accuracy in
predicting and explaining the many nuances ofhuman behavior
than symbolic models currently do. Their success, should it
come, will mean a reinstatement of associationism as the cor
nerstone of cognition.

Some assumptions underlying Smolensky's
treatment of connectionism

Eric Dietrich and Chris Fields
Knowledge Systems Group, Computing Research Laboratory, New Mexico
State University, Las Cruces, N.Mex. 88003

Smolensky deftly avoids, in his target article, the issue of the
scientific merit of, and hence the scientific evidence for, his
particular formulation of the connectionist strategy in cognitive
science (sect. 1.2). He rather attempts to define connectionism
in a way that clearly sets it apart from the traditional symbolic
methodology, and in so doing to argue obliquely for its superi
ority as a research strategy. Smolensky advances, in other
words, a position in the philosophy of science, and it is in this
spirit that we will reply.

The principle theSis of the target article is that connectionism
- or at any rate Smolensky's fonnulation of it ~ is revolutionary
in the sense that it is incompatible in principle with the received
view, that is, the symbolic methodology. We will show that
Smolensky's argument for this point, as presented in sections 2
5, rests on two implicit assumptions: the assumption that there
is a "lowest" psychological level of analysis, and the assumption
that different semantics, i.e., different interpretations of the
behavior of a system, are in principle appropriate to different
levels of analysis. It is of interest that Smolensky shares these
assumptions with mentalists such as Fodor (1986) and Pylyshyn
(1984), the very theorists he sees himself as opposing (sect. 1.3).
We believe these assumptions to be false. Although we will not
have space to argue in detail against them, we will illustrate
briefly the effect of their rejection on the status and utility of the
connectionist methodology.

Let us first examine the overall argument of the paper, taking
Smolensky completely literally on each ofhis points. The goal of
Smolensky's formulation ofconnectionism as stated in the Con
clusion is not to replace symbolic cognitive science, but rather to
enrich cognitive science as a whole by explaining "the strengths
and weaknesses of existing symbolic theory ... how symbolic
computation can emerge out ofnonsymbolic computation," and
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so forth. Smolensky's goal, to use his analogy (sect. 5; also
Smolensky 1987a), is to create a microthcory of cognition that
stands to macroscopic cognitive science as quantum mechanics
stands to classical mechanics. Based 011 this analogy, one might
expect Smolensky to propose a mkrotheory, the explanations of
which grade smoothly into those of the macrotheory as a set of
parameters approach specified limits. Instead, Smolellsky ar
gues at length that the micro- and macrotheories are in this case
inconsistent (sect. 2.4), and indeed, he phrases the argument in
a way that suggests that he believes the scientific utility of
connectionism to hinge on its being inconsistent with the sym
bolic approach (hence his impatience with "bland ecumeni
caIism").

The notion that one theory can explain the strengths and
weaknesses ofanother theory with which it is flatly inconsistent
is perplexillg, to say the least. The way around the paradox,
clearly enough, is to view the theories as advancing alternative
interpretations of the system's behavior to satisfy different
explanatory requirements - in the case of physics, classical
mecllanics explains billiard balls, while quantum mechanics
explains electrons. The interfaces are then handled by defiuing
approximations. 111is is what Smolensky does in practice (sect.
5), but it is straightforwardly ecumenical. Smolensky's attempt
to advance this (quite reasouable) view of tile relationship
between the symbolic and subsymbolic approaches while simul
taneously affirming their inconsistency in principle lends his
paper a certain dramatic tension, but hardly increases its
coherence.

Smolensky's insistence that the symbolic and subsymbolic
approaches are inconsistent can be traced, we believe, to his
assumptions about the role of semantics in psychological expla~

nation. Before proceeding with this, however, it is worth malc
ing fully explicit a point that SlIIolensky touclles on, but does not
elaborate. The philosophical debate about connectionism is not,
contrary to common opinion, a debate about architecture; it is
only a debate about semantics, that is, about the interpretation
of the behavior ofan architecture. This point can be seen clearly
by viewing tile connectionist architecrure in the state-space
representation defined by Smolensky's claim (8a). The states ill
this space are vectors specifying possible values of the excita
tions of the nodes in the system; this space is continuous, but can
be approximated arbitrarily well by a discrete space (sect. 8.1).
Paths in this state space correspond to episodes of execution
from given inpiJts, and can be viewed as searches in the usual
way.

Viewed in this representation, computations on a connec~

tiollist machine have the same arcltitectural features as com
putations on a von Neumann machine; they amount to serial
searches in a space of possible solutions. In particular, a deter
ministic connection machine is just as behaviorally rigid, and
hence just as brittle, as a detenninistic von Neumaun maclline.
This equivalence is preserved if the macllines in question are
stochastic (Fields & Dietrich 1987). As Smolensky notes, some
what obliquely, in sect. 2.4, what cOlmectionism has to offer
architecturally is no more, but also no less, than an alternative
methodology for building AI systems.

Smolensky's revolution can therefore only be supported by
demonstrating a principled incompatibility between tile in~

terpretations of the behavior of the architecture advanced by his
version ofconnectionism on the one hand, and by the symbolic
paradigm on the other. The entire weight of Smolensky's case,
therefore, must rest on claims (8b) and (8c), which together
amount to the claim that such a prindpled incompatibility of
interpretations exists. Claim (8b) is simply asserted; Smolensky
then argues that, if(8b) is true, it will typically be impractical to
calculate the interactions between patterns of activity in
terpretable at the conceptual level precisely. The consequence
of this argument is then reformulated from a claim about Com
putational resources to a principle in (8c). This move desetves
some skepticism: Given a mapping from activation patterns to
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concepts, and a precise specification of the underlying dynam~

ics, one could calculate a precise specification - or at least an
arbitrarily good approximation (e.g. to within 10- 16 seconds)
of the behavior of the system at the level ofconcepts ifone were
willing to take the time to do so. Smolensky grants us a precise
specification of the underlying dynamics; indeed this is, one
suspects, what makes connectionism de~lr to hiOl. He must
therefore implicitly deny that any fixed mapping from activity
patterns to concepts is possible, in principle.

Two questions arise very naturally at this point. First, how
Call Smolensk-y rule out the simple stipulation, in the spirit of
denotational semantics, of a fixed interpretation mapping ac
tivity patterns to concepts? Humans, after all, interpret human
behavior conceptually with great facility, and there is every
reason to believe that they do not do so by calculating approxi~

mate concept-level descriptions from the underlying dynanlics.
'What is to prevent theorists from doing the same? Second, if
there is something to the claim that concept-level descriptions
are fuzzy in principle, what prevents us from using the sanle
argument to show that subsymbolic descriptions are- only fuzzy
approximations of neural descriptions, or that neural descrip
tions are ouly fuzzy approximations ofbiochemical descriptions,
and so forth? The answers to these questions reveal Smolensky's
implicit assumptions, which he appears to share with his arch
rivals Fodor and Pylyshyn.

Let us consider the second question first. Smolensk-y argues
(sect. 4) that connectionists need not be too concerned with
neural realism because we do not currently know enough about
the brain to construct neurally realistic models. We must admit
finding this claim somewhat mystifying in light of the success of
neurally lllinded groups such as Grossberg's in formulating
candidate models of interesting cognitive processes (e.g.,
Grossberg 1980, 1987; Grossberg & Millgolla 1985; Grossberg
& Stone 1986). Be tlmt as it may, however, it is surely an error to
argue from impatience over a lack of data to a principled
distinction between levels of description. SlIIolensky must, in
addition, implicitly believe that there is no psychological de~

scription of events at the neural level for subsymbolic descrip
tions to be fuzzy approxinlations of. In other words, if the
subsymbolic level ofdescription is the lowest level that admits a
psychological interpretation, then we can stipulate that descrip
tions at this level are precise, and we need 1I0t worry that they
may tum out to be mere fuzzy approximations of lower-level
descriptions.

A consideration of the first question posed above reveals a
second assumption. Smolensky cannot block the claim that the
behavior ofa physical system can be interpreted, by stipulation,
at any level of description that its interpreters prefer. The
model-theoretic notion of interpretation is, after all, the very
cornerstone of the theory of virtual machines on which the
practice of emulative programming rests. He must assume,
therefore, that some interpretations are in principle appropriate
to the chosen level ofdescription, whereas others are not. Claim
(8b) is an exanlple of such an assumption; in addition to (8b),
Smolensky must assume that the rough and ready conceptual
interpretations that humans impose both on themselves and on
each other in everyday life are inappropriate as high-level
descriptions ofconnectionist systems that are precise relative to
the operative explanatory goals. Apparently for Smolellsky, the
appropriateness ofadescriptioll is determined not by explanato~

ry goals, but by metaphysics.
"Thoroughly modern mentalists" such as Fodor and Pylyshyn

make precisely these assumptions, although with the concep
tuallevel taken to be the "preferred" level of analysis (e.g.,
Pylyshyn 1984; Fodor 1986). Smolensky simply transfers this
preferential treatment down one level of description, while
maintaining the sallie mentalist, or we shudder to say, dualist
metaphysics.

H these assumptions are rejected, one is left with an ec~

umenical, but in our opinion far from bland theory. It runs )ike
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this: Humans are complex information-processing systems.
They can be interpreted as such at any level of description. A
description ofa human as a dynamical system at any level can be
~sed to calculate a description at any higher level; if One is
willing to commit the necessary resources, this description can
be made arbitrarily precise relative to the lower-level descrip
tion. The precision required is determined by explanatory
goals. The only resmctions on the semantics of the intcrpreta
tions used to describe the system are those imposed by intra
level coherence, and by the explanatory goals with which the
interpretation is constructed. One can, if one wants, interpret
neurons as representing grandmothers; if this interpretation
does not prove to be useful, it can always be revised.

We wish to claim no credit whatsoever for this view. It was·
formulated Over 30 years ago by Ross Ashby (1952), and it
appears to us to provide, with relatively minor technical embel
lishments, a quite adequate foundation for wmputational psy
chology and cognitive science. In particular, it shows us dearly
how connectionism, viewed not as a revolution, but as a valuable
addition to our methodological tools, can achieve the goals
Smolcnsky sets out in his Conclusion.

On the proper treatment of Smolensky

Hubert L. Dreyfus' and Stuart E. Dreyfusb

"Department of Philosophy, University of California, Berkeley, Calif. 94720
and bDepartment of Industrial Engineering and Operations Research,
University of California, Berkeley, Calif. 94720

Connectionism can be understood as the most serious challenge
to representationalism to have emerged on the cognitive science
scene. In view of the intellectual rigor of Smolensky's contriblI
tion to connectionism we hoped his target article would present
a powerful formulation of this eliminitivist challenge. On first
reading, however, we were shocked by what seemed to be an
attempt to defend a two-level mpresentationalist account of
connectionism. At one level - call it the macrolevcl - Smol
ensky seemed to be saying that whenever a net is processing
infurmation the representational symbols of conventional cog
nitive science are instantiated by patterns of activities of units.
His disagl"ecment with cognitive science is simply that the
generation of intelligent behavior could not be exhaustively
explained by formal operations on these "conceptual" symbols.
Moreover, Smolensky seemed to hold that on a second, deeper
microlevel, one could carry out the conventional cognitive
science program by explaining intelligent behavior using finer
grained (subconceptual) symbols which picked out context-free
microfeatures of the task domain.

That this was not only our interpretation was brought home to
us when we found that Fodor & Pylyshyn (1988) quote this very
target article as clearly placing Smolensky and the connec
tionists in the representationalist camp. Fodor & Pylyshyn use
Smolensky's statement that "Entities that are typically repre
sented in the symbolic paradigm by .symbols are typically
represented in the subsymbolic paradigm by a large number of
subsymbols" (sect. 1.3., para. 5) as evidence that Smolensky is
committed to what we have called macroreprescntationalism.
To support their understanding that Smolensky is a representa
tionalist at the microlevel Fodor & Pylyshyn quote Smolensky's
conneCtionist hypothesis that, "Complete, formal and precise
descriptions of the intuitive processor are generally tractable
not at the conceptual level, but only at the subconceptuallevel"
(8c). Fodor & Pylyshyn conclude that "the resultant account
would be very close to the sort of language of thought theory
suggested in early proposals by Katz and Fodor."

On second reading we think that we (and Fodor & Pylyshyn)
have misunderstood Smolensky on both these points. There is a
plausible way of construing both statements, and others like

them, in the context of the whole target article which makes
dear tllat Smolensky's version of connectionism is not commit
ted to representationalism on either the macro- or the micro
level.

On the macrolevel, the sentence quoted by Fodor &
Pylyshyn does seem to endorse the cognitivist hypothesis that
all intclligent behavior can be analyzed as the sequential trans
formation of symbols which represent context-free features of
the object domain - precisely those features we can nonnally
notice and name. However, in the course of Smolensky's paper
the same idea is progressively refined until it is clear that the
claim is not that all intelligent behavior involves symbol trans
formation, but rather that only a very limited form ofbehavior 
the deliberate behavior typical of the novice consciously apply
ing rules - involves symbols. Hypothesis 8b restates the same
principle but explicitly refers to "the semantics of conscious
concepts ofthe task domain" (our emphasis). And in section 6.1,
paragraph 1, Smolensky reinterprets 8h in a completely unam
biguous way stating that "concepts that are consciously accessi
ble correspond to patterns over large numbers of units" (our
emphasis).

On the microlevel, Smolensky certainly seems to be a repre
sentationalist when he says in his abstract: "The numerical
variables in the system correspond semantically to fine-grained
features below the level of the concepts consciously used to
describe the task domain." And the final statement ofhypothesis
8 might well suggest, and indeed did suggest to Fodor &
Pylyshyn, that the precise logical formalism they favor, although
it is missing on the macrolevel, which presupposes a language of
thought using features of the sort named in everyday language,
can be found on the mi<:rolevel in a language of thought that uses
subsymbols, st.mding formicrofeatures that we are not normally
able to perceive and articulate.

Once one realizes, however, that what Smolensky means by a
complete, fonnal, and precise description is not the logical
manipulation of context-free primitives - symbols that refer to
features of the domain regardless of the context in which those
features appear - but rather the mathematical description ofan
evolving dynamic system, it is far from obvious that the fine
grained features Smolensky calls subsymbols are tlle elements
of a language of thought. Sentences such as "Hidden units
support internal representations of elements of the problem
domain, and networks that train their hidden units are in effect
learning subconceptual repre~entationsof the domain" (sect. 3,
para. 5) certainly leave open the possibility that there neces
sarily exist context-free subsymbols representing features ofany
problem domain, and that units or patterns ofunits detect them.
But later in the paper Smolensky forecloses this interpretation
by stating explicitly that "the activities of the sllbconceptual
units that comprise the symbol- its subsymbols - change across
contexts" (sect. 7.2., para. 6).

If the idea ofa unit having a semantics but not corresponding
toa context-free feature of the task domain seems contradictory,
consider the follOWing. Given a net with hidden units and given
a particular activity level of a particular hidden unit, one can
identify every input vector which produces that activity level of
that hidden unit. The activity level of the unit can then be
semantically interpreted as representing the set of these input
vectors. That unit at that activity level is a subsymbol in a very
weak sense. For, while such a subsymbol can be correctly
interpreted as representing a microfeature of the domain, the
microfeature need not be a context-free microfeature. (To sym
bolize a context-free microfeature the unit would need to take
on its given activity level independently of one or more of the
elements of the input vector. Roughly put, if the input vector is
the state oftlle world, then a context-free feature is that portion
of the input vector which determines the activity of the hidden
unit independent of the rest of tlle input vector). Given this
weaker version ofsemantic interpretation, there is no necessary
connection between claiming that hidden units are semantically
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interpretable, as Smolenslcy holds, and claiming that they pick
out context-free invariant features of the domain, which is the
implicit commitment of the representationalism characteristic
of cogpitive science. Thus connectionists can hold the minimal
representationalist position of Smolensky and still eliminate the
sort of conceptual and subconceptual symbols defended by
cognitivists such as Fodor & Pylyshyn.

The promise and problems of connectionism

Michael G. Dyer
computer Science Department, University of California at Los Angeles, Los
Ang~es, CaNt 90024

I am attracted by PDP (parallel distributed processing) mode~s
because of their potential in tolerating noise, generalizing over
novel inputs, exhibiting rule-like behavior without explicit
rules, performing pattern completion and decision-making
through massively parallel constraint satisfaction, and so on.
Connectionism promises to supply an alternative fuundation fur
cognitive sciencc (in place of the symbolic, linguistic, logical
foundations) and to unite it, for the first time, with the physical
lmd biological sciences through statistical and continuous
models.

The use of weight matrices does allow widely varying inputs
to be mapped into a set of invariant categories in the output.
Unfortunately, what gives these systems their robustness also
makes it very difficult to capture abstractions and symbolic
operations and has led to attacks on the claims made for specific
PDP models (e.g., Pinker & Prince 1988).

Although the discovery of automatic learning devices may
appear to supply a philospher's stone to cognitive science, such
devices must still be programmed (by specifying the initial
connections of the network and the nature and oroerofthe input
during the learning phase). Although it might be theoretically
possible to submit enormous quantities of carefully organized
input data to one gigantic, homogeneous "connectoplasm" ,lild
after 20 years to get out a college-educated neural network, this
would be impractical, to say tIle least. Even if it were su(.'Cessful
we wouldn't understand scientifically what we had produced.
Consequently, we must also pursue top-down approaches.
_Higher-level tasks must be specified and used to direct the
tonstruction of PDP architectures capable of handling those
tasks, which invariably require symbol-like operations. Consid
er reference resolution during comprehension and rebuttal
during argumentation:

(1) Pronoun reference. To read the text < John walked into a
restaurant and the waiter, Bill, walked up. After he ordered he
brought him the food. > syn;tbolic NLP (Natural Language
Processing) systems first instantiate a restaurant schema and
bind John to the patron role. Within the schema is a representa
tion for the patron receiving the food from the waiter. Since
John is already bound to the patron role, upon binding "him" as
the recipient of the food, the system can infer immediately that
John (rather than Bill) is receiving the food. This fundamental
kind of role-binding (Dolan & Dyer 1987) is very difficult to
accomplish in a reasonable way in PDP-models.

(2) Rebuttal. H one goes up to a Finnish friend and states: "All
Finns are terrible at music," the chances are good that he will
reply: "What about Sibelius?" Consider for a moment what
must be going on here. (See also BBS multiple book review of
Sperber & Wilson's Relevance, BBS 10(4) 1987.] First, the Finn
must understand the initial utterance and realize that it is Hot a
fact but an opinion or belief. He must then decide whether or
not he agrees with it. If he has a negation of it already in
memory, then he need only recall it. However, it is not likely
that someone has even expressed this thought to him in the past,
so a negation has to be generated on the fly. He needs to use an
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argument strategy (Alvardo et al. 1986) of the sort: <ux claims
that all y from class C have property P, then search in memory
for a yl from C with not-P>. Finally, the proper associative
retrieval has to be performed and the recalled counterexamples
have to be evaluated before actually being generated as a
rebuttal. The above task is complex, involves a number ofsteps,
and cannot be modeled with only simple associational tech
niques (which, solely based on the input, would first tend to
retrieve all Finns who are terrible musicians).

When association lists were first implemented in Lisp (as P
lists), researchers argued that all forms of knowledge could -be
represented in terms of such associations. But P-lists (frames,
etc.) are only tools. They do not ten us how to construct any
particular theory ofcognitive processing. The invention of Lisp
greatly advanced the technological hase for pursuing symbolic
AI. Now researchers are realizing that all forms of associations
can be represented as adaptive weight matrices. The discovery
of the generality and usefulness ofadaptive weight matrices may
advance the technological base for modeling one kind of learn
ing just as greatly. But, like other tools, adaptive weight ma
trices do not supply us directly with solutions to complex
processing problems in cognitive Illodeling.

Symbolic operations should not be implemented to perform
exactly as in symbolic models. Hthey were, PDP models would
lose m,lily of thcir interesting properties. But without mecha
nisms to perform analogous symbolic functions, PDP models
will never advance beyond the signal processing stage. Without
something analogous to bindings, it is impossible to fonn larger
knowledge structures.

Currently, schema-like knowledge is modeled 01 PDP sys
tems in terms of patterns of activation over PDP units, usually
composed of "microfeatures" (Rumelhart & McCleUand 1986).
This approach poses a number of problems for anyone who
wants to represent and manipulate schema-like structures fur
comprehension, question answering, argumentation, and soon.
These problems include:

(1) Knowledge portability: In a symbolic system, any pro
cedure that knows the syntax of the symbolic formalism can
execute or interpret a symbol's semantic content. Symbol struc
tures thus serVe as an illtedingua for internal processes. In
contrast, since PDP models fonn their own patterns of activity
through learning, the activity pattem learned by one network
will generally be undecipherable to another. As a result, it is
very difficult to port lmowledge frQm one area of memory to
another. Most current PDP models are designed to perform a
single task; the same network cannot be used for multiple tasks.

(2) Microfeature selection: In many PDP models, gradient
descent lcarning leaves a set of microfeatures "clamped down"
or fixed. In such cases, the knowledge representation problem
of AI is simply pushed back to an equally hard problem of
determining what the microfeatures must be. One way to
eliminate microfeatures is to extend gradient descent learning
techniques into the representation of the input itself. In one
experiment, our model (Miikkulainen & Dyer 1987) learned
distributed representations of words while at the same time
performing McClelland and Kawamoto's (1986)-case-role assign
ment task. As a result, microfeatures were never needed; word
meanings were formed distributively during the perfurmance of
the task, and the resulting model did a better job at generalizing
to novel inputs in the case-role assignment task.

(3) Training set reuse: In most PDP models there is no
distinction between rapidly changing knowledge and knowl
edge more impervious to change. The weight matrices are
fonned by repeated interaction with a training set (TS). Since
the same network stores ail aSsociations, the teacher must
resubmit the original TS to the system when novel inputs are
learned; otherwise the system will not respond correctly to the
old inputs (due to interference). In contrast, humans can often
form categories based on a very small number ofinputs (Pazzani
& Dyer 1987). It is unrealistic to assume that TS data are stored
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verbatim somewhere in the brain, simply to reestablish aweight
matrix. Clearly, knowledge must be consolidated at some point
and memories must be organized so that new information Can be
rapidly acquired while interfering minimally with consolidated
memories.

PDP models have caused great excitement, especially in
signal processing areas (where adaptive networks allow complex
data to be mapped to a fixed set ofcategories). IfPDP models are
to go beyond adaptive signal processing, however, analogs for
symbols and symbol processing (Touretzky 1987) will have to be
found.

Dynamic systems and the "subsymbolic
level"

Waller J. Freeman
Department of Physiology-Anatomy, University of California, Berkeley, Calif.
94720

I find it easy to agree with the premises that Smolensky sets
forth in defining and defending the subconceptual hypothesis,
and with many of the conclusions that he draws. In particular,
the observations by my students and myself on the functions of
the brains of small mammals trained to pelform cognitive tasks
appropriate to their stations in the phylogenetic tree have amply
shown that (8a) the dynamics of intuitive processors and their
changes with learning are governed by ordinary differential
equations (ODEs), tllat (8b) concepts are complex patterns of
activity over many units, and that (8c) formal, precise and
complete descriptions are not "tractable" at the conceptual
level, but only at the subconceptual level.

But my agreement is predicated on his agreement with me
that formal, complete, and precise descriptions refer to the
ODEs by which a model is formulated, whether in software or
hardware, and not to the solutions of the equations, which with
any reasonable degree of model complexity are endlessly un
folding, evolving, and delightfiJIly (or painfully) full ofsurprises.
Given the structures of the ODEs that suffice to replicate EEG
waves and the requisite complete parameter values, we are no
more able to predict in detail the output ofthe model than that of
the modeled brain (Skarda & Freeman 1987). Will he agree with
me that the solutions may constitute concepts, exemplilled by
odors (meaningful events for an animal) as distinct from odorants
(laboratory chemicals used as conditioned stimuli)? This is
providing that the solutions confonn to stable attractors repre
senting convergence to reproducible spatiotemporal patterns of
neural or simulated activity (Baird 1986; Freeman & Skarda
1985).

With a similar reservation I agree that the subconceptual is
above the neural level. By this I mean that infonnation which
relates to or subserves goal-directed animal behavior exists at
the macroscopic level of cooperative activity of masses of neu
rons; it is not observable in the unaveraged behavior of single
neurons (Freeman 1975; Freeman & Skarda 1985; Skarda &
Freeman 1987). Most of the physiological results that claim
otherwise have been derived from paralyzed or anesthetized
animals, or they have resulted from stimulus-locked time en
semble averaging, which retrieves the 2% ofvariance related to
the stimulus and flushes the 98% of the background noise that
arises from the attractors in the brain. I also agree that the
proper time base for solving descriptive ODEs is continuous,
but with the understanding that in software simulation a dis
crete time step is needed, small enough to be nonintrusive; this
is feasible. But in hardware simulation too the array must be
small enough (e.g., up to 100) so that one need not resort to time
multiplexing; with any reasonable size of fully connected array
(e.g., 1,000 to 10,000 elements), continuQus time isnot feasible.
This is because without multiplexing the number ofconnections

increases with the square of the number of elements, N, but
with multiplexing it increases as 2N (Freeman, in press).

I presume that Smolensky shares my aversion to partial
differential equations, perhaps for the same rea<;ons, that they
are infinitely dimensional and less tractable than integro
differential equations. The nervous system also appears to avoid
them at the level of concept formation by recourse to spatial
discretization with columns and glomeruli. I suppose that by
"quasilinear" equation Smolensky means the 1st or 2nd order
ODE cascaded into a sigmoid nonlinearity or its functional
approximation. This element for integration is by now virtually
standard in connectionism.

I agree most enthusiastically with his complaint that al
together too great a proportion of our understanding of real
brains is stnlctural rather than functionaL By the same token I
complain that connectionists likewise ignore dynamics too read
ily; those who do pay attention tend to rely altogether too greatly
on equilibrium attractors for their dynamics and neglect the
attractors of limit cycles and chaos. The reasons for both in
stances of neglect appear to he the same: Things are too
complicated.

Smolensky's Table 1 should, in my opinion, have aU pluses;
this can be done with some minor redefinition of terms.

I infer, from his reliance on nonlinear ODEs, that Smolensky
agrees that solution Sets for a complex network typically incor
porate multiple stable domains. The behavior ofsuch asystem is
most often marked by sudden jumps or bifurcations from one
domain to another, depending on one or another bifurcation
parameter, which are the phase transitions (sect. 9.5., para. 1.)
that he writes about. Although the loeal time scale may be
continuous, the .global time scale must be discrete. This is the
essence of the strings of bursts that we see in EEGs and the
strings of concepts that we infer the bursts carry (Skarda &
Freeman 1987), which are parts of the "slowly shifting harmony
landscapes" in his language.

Smolensky asks questions of doubtful value concerning tlle
semantics of subsymbolic systems, namely, "which activity
patterns actually correspond to particular concepts, or elements
of the problem domain?" Animals, of course, have no proper
linguistic abilities, and we have as yet no appropriate data from
man. Correspondence is a matter of behavioral correlation in
neurophysiological research. We have made extensive use of
the third class of methodologies that Smolensky exemplifies by
"multidimensional scaling." The first two are laden with difficul
ties that we believe are insoluble. The implicit notion that any
positivistic relationship exists between "words," "images," and
"neural activity pattenut should have died with phrenology but
regrettably has not.

Moreover, the idea ofrepresentation carries with it notions of
registration, storage, retrieval, comparison, cross-correlation,
and figure completion. The PDP (parallel distributed process
ing) operations of backward propagation, error correction, and
heteroassociative learning are also predicated on this digital
computer-metaphor for memory. Our physiological evidence
shows that such storage, retrieval, comparison, etc., do not exist
in the olfactory system, and we have predicted that they will be

. found not to exist elsewhere in biological brains. We know that
information is incorporated into the dynamics and the structure
of brains from the outside world, butwe do not kno"';', nor need
we know, what is being represented on which TV screen to
which homunculus in the brains of rabbits, or, for that matter, of
our spouses. The idea is unnecessary in understanding brains
and the devices that simulate them. Fodor and Pylyshyn (1987)
are, I believe, right in stating that if connectionism relies on
representation it is dead. Its liveliness stems from its indepen
dence of that cognitivist assumption.

I much prefer Smolensky's "hannony maxima" to his "ver
idical representations." The latter term has the ring about it of
"truth tables," which exist in the world as teeth and fire but not
in the brain; what evidence can he put forth that anyone of them
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is true? But the fornler has the ring of poetry, which Turing
machines cannot do or evcn translate, and which lends itself to
the images of strange attraetors and the genesis of chaos, the
grist and gristle of dynamical systems.

Connectionism and the study of language

R. Freidin
Department of Philosophy, Princeton University, Princeton, N.J. 08544

The application of computers to the problem of understanding
natural language has, from the outset, been marked with great
optimism and also great naivete (Dresher & Hornstein 1976).
This seems to be no less true for current connectionist ap
proachcs to language - though it is perhaps a bit early in the
game to see what connectionist models can do in the area of
natural language. (Sec, however, Pinker & Plince 1987 for a
detailed critique of Rummelhart & McClelland's 1986 proposal
regarding the past tenses of English vcrbs.) What characterizes
these AI approaches to natural language is a certain lack of
understanding about the complexity of the object of inquiry and
the difficulty of the problem. For example, Smolensky states in
sect. 6, para. 4 that "the competence to represent and process
linguistic structures in a native language is a competence of the
human intuitive processor, so the subsymbolic paradigm as
sumes that this competence can be modeled in a subconceptual
connectionist dynamical system," By competence Smolensky
means ability, I assume. He is therefore proposing a connec
tionist model of linguistic performance (not to be confused with
linguistic competence - Chomsky's technical term for a speak
er's knowledge oflanguage). There is no reason to believe that
such a model will succeed,

The most difficult problem a model of language use must
address is what is called the creative aspect oflanguage use - the
fact that nonnal language use is innovative, potentially un
bounded in scope, and free from the control of detectable
stimuli. As Chomsky notes in Language and Mind (1972), the
latter two properties could be accommodated within mechanical
explanation. He continues:

And Cartesian discussion of the limits of mechanical explanation
therefore took note of a third property of the normal use of language,
namely its coherence and its "appmprJateness to the situation" 
which ofcourse is an entirely different matter from control by external
stimuli, Just whut "appropriateness" ,md "coherence" may consist in
we cannot say in any clear or definite way, but there is no doubt that
these are meaningful concepts. We can distinguish normal use of
language from the ravings ofa maniac Or the output ofa computer with
a rando III element.

Honesty forces us to admit that we are as fur today as Descartes was
three centuries ago from understandingju:;t what enables a human to
speak in a way that is innovative, free from stimulus control, and also
appropriate and coherent. This is a serious problem that the psychol
ogist and biologist must ultimately face and that cannot be talked out
of existence by invoking "habit" or "conditioning" or "natural selec
tion." (pp. 12-13)

Or "subconceptual connectionist dynamical system," jt would
appear,

TIle underlying assumption of connectionist approaches to
cognitive modeling seems to be that we now have a line on the
right architecture for cognition (i. e., the "connection machine"
hardware) as well as the appropriate mechanism for learning
(the software for running the machine successfully in cognitive
domains). Presumably if we feed the connection machine tlle
appropriate data, the machine will produce the correct cog
nitive model. The machine then functions as a discovery pro
cedure for cognitive models in various domains. Thus in. the
domain ofIanguage we might expect that on presentation ofdata
the machine will produce a grammar of the language.
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The failure of discovery procedures for grammars is well
known in linguistics. It seems highly unlikely that this situation
will change with the introduction of some powerful computer
architecture coupled with general inductive learning strategies
of the sort discussed in the connectionist literature. What
linguistic research into the structure oflanguage has shown over
the past thirty years is that a cognitive model of language
involves several abstract concepts specific to the language fac
ulty. This model has strong empirical support cross linguistically
(for details, see Chomsky 1984; Freidin 1987). There is no
reason to believe that these abstract concepts will emerge from
the kind of statistical analysis of data available in connectionist
networks - either symbolic or subsymbolic.

In fact, there is good reason to believe just the opposite. Many
of the absb·act concepts oflinguistic theory are embedded in the
fonnulation ofgeneral grammatical principles which distinguish
ungrammatical sentences from gramlnatical sentences. Consid
er, for example, the well-formedness conditions on the occur
rence of bound anaphors (e.g., reflexive pronouns and re
ciprocals ~ each other in English), In current versions ofgener
ative grammm:, there is a general condition called Principle A of
the Binding Theory that prohibits anaphors that are antecedent
free in the domain of a syntactic subject (details aside), The
effect of this principle is to mark sentences such as (1) as
ungrammatical in contrast to grammatical sentences as in (2).

(1) *Mary, believe, I, Bill to like hersel~]

(2) a. Mary, believes [,herself, to Wee Bill]
b. MarYi likes herself(

The salient point here is that principles of grammar like Princi
ple A are fOffimlated on the basis of what structures are ill
formed - tllat is, in terms ofungrammatical examples which are
not part of the normal linguistic environment. Thus the con
cepts involved in such principles, not to mention the actual
formulation ofthe principles themselves, are motivated in terms
of the "poverty of the stimulus" - that is, the lack of relevant
information in the environment of the language learner (sec
Chomsky 1980 for discussion). The problem for any model of
language acquisition based solely on input from the linguistic
environment i:; that there is no way to distinguish ungram
matical sentences, e.g. (1), from novel grammatical sentences.
Why should a language learner who has heard the sentences in
(2) judge (1) to be ungrammatical rather thail just a novel
grammatical sentence? The answer (according to generative
grammar) is that principles like Principle A are part of the innate
cognitive structure a child brings to the task of language
acquisition.

For such principles (or their effects) to be derived from
counectionist networks constructed solely from the statistical
analysis of data, the ungrammatical versus novel grammatical
sentence problem must be solved. It is difficult to see how this is
to be done without incorporating some version of the innateness
hypothesis in linguistics. Furthermore, caution seems advisable
when intcl1Jreting the effects of conncctionist networks. For
example, Hanson and Kegl (1987) discuss a connectionist net
work PARSNIP "that learns natural language grammar from ex
posure to natural language sentences" (from the title of the
-paper). On the evidence they present, the claim is false.
"PARSNIP correctly reproduces test sentences reflecting one
level deep center-embedded patterns (e.g., [[the boy [the dog
bit]] yelled] which it has never scen before while fuiling to
reproduce multiply center-embedded patterns (e.g., [[the boy
[the dog [the cat scratched]bit]] yelled])'" However, the phrase
structure rules fur English do not make distinctions between
multiple center-embedding and single center-embedding - or
for that matter, between center-embedding and noncentcr
embedding. The unacceptability of multiply center-embedded
constructions does not follow from grammar at all - see Miller
and Chomsl-y (1963) for the original discussion. Thus, whatever
the PARSNIP network represents, it is obviously not a grammar in
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the usual sense, At this point is it still far from clear what
relevance connectionist models are going to have to cognitive
models of language.

Statistical rationality

Richard M. Golden
Department of PsyChology, UniversIty of Pittsburgh, Pittsburgh, Pa. 15260

Because Smolensky's subsymbolic hypothesis requires a more
rigorous formulation, his arguments are not convincing. In his
commentary, a revised form of Smolensky's subsymbolic hy
pothesis is proposed based upon analyses of the relationships
between logical inference, statistical inference, and connec
tionist systems. The compatibility afthe symbolic and subsym
bolie paradigms is then reconsidered using the revised subsym
bolie hypothesis.

Problems with the tennlnology of Sma/ensley's subsymbolic
hypothesis. Smolensky's subconceptual-Ievel hypothesis (8c) is
completely dependent upon distinguishing the "conceptual"
and "subconceptual" levels of description, yet he is unable to
characterize even the nature of the representation at the sub
conceptual level. The term "complete, formal, and precise
description" in (8c) is also problematic. I believe that Smol
ensky's intention here is to describe the computational goals ofa
connectionist model with respect to his statistical "best fit
principle." (sect. 9.1.) If this is the case, however, this intention
should be explicitly stated within the subsymbolic hypothesis.

Logical inference is a special case ofstatistical inference. One
serious limitation of Boolean algebra or symbolic logic is that
propositions are either true or false. That is, symbolic logic is
incapable of precisely representing partial belief in a proposi
tion. Also note that the traditional rule-governed approach in
cognitive science is based upon deciding whether propositions
are either true or false: A proposition cannot be both "almost"
true and"almost not" false. A number ofstatisticians (e.g., Cox
1946; Jeffreys 1983; Savage 1971) have proved that the only and
most general calculus of partial belief whose conclusions are
always guaranteed to be consistent with symbolic logic is proba
bility theory.

Cox's (1946) approach is particularly elegant. Let a and ~ be
propositions and let B (al~) be a belief function whose value is
one (true) ifthe truth of~impliesthe truth ofa, and whose value
is zero (false) otherwise. Thus, when the range of the belief
function, B, is binary and discrete, B represents a rule. The
problem now is to extend the range of the function B so that it is
continuous and is permitted to range between zero and one
inclusively. Cox (1946) has prOVided a simple formal argument
showing that ifB always assigns real numbers to pairs ofpruposi
tions such that the laws ofsymbolic logic are never violated, the
function B(al~) must be the conditional probability of a given
that ~ is true.

Rational connectionist models are statlsr;cal inference mecha
nisms. Although Smolensky has proposed the "best fit princi
ple" as a desired property ofconnectionist systems, this princi
ple has only been formally demonstrated for a small class of
connectionist systems such as the Harmony theory neural net
works of Smolensky (1986a) or the Boltzmann machine neural
networks of Hinton and Sejnowski (1986). Other researchers
(e.g., Hummel & Zucker 1983; Rumelhart, Smolensky, Mc
Clelland, & Hinton 1986) have viewed their networks as con
straint satisfaction networks or nonlinear (usually quadratic)
optimization algorithms (see e.g., Luenberger 1984) that are
minimizing/maximizing some cost function. From the perspec
tive of demonstrating -rational infonnation processing, such
constraint satisfaction analyses are inadequate since the in
ference process has not been shown to be either logical or
statistical in nature.

One solution to the problem of demonstrating rational infor
mation processing is to usc the cost function that a neural
network is minimizing/maximizing during information retrieval
to construct a probability function that the network is maximiz
ing during information retrieval (Golden, submitted). More~

over, it can be shown using an extension of arguments by
SmQlensky (1986a) that such a construction is unique (Golden,
submitted). Ifsuch a probability function exists, then the neural
network can be viewed as a statistical pattern recognition al
gorithm that is computing the most probable value of the
information to be retrieved. Such algorithms are known as MAP

(maximum a posteriori) estimation algorithms in the engineer
ing literature. This type of computational theory prOVides for
mal justification for the "statistical rationality" of many popular
detenninistic connectionist models such as Anderson's BSB
model (Anderson ct al. 1977). Hopfield', (1984) model, and the
back-propagation neural network models (Rumelhart, Hinton &
Williams 1986). In addition, questions concerning what classes
of probabilistic environments a given connectionist model is
capable ofIeaming and the extent to which a given connectionist
model's learning algorithm is optimal can be addressed.

Continuity Is necessal)' for representing partial (real-valued)
beliefs. As noted above, statistical inference differs from logical
inference in its ability to represent and manipulate "partial
beliefS" in propositions. Logical inferenc~ can only approx
imately model statistical inference, but statistical inference can
yield exactly the same answers as logical inference. Accordingly,
the following revised version of Smolensky's subsymbolic hy
pothesis is suggested:

A revised subsymbolic hypothesis. The intuitive processor is a
connectionist dynamical system that is designed to .~olve staustical
pattern recognition problem:>.
This revised subsymbolic hypothesis demonstrates more di

rectly the incompatibility of the subsymbolic and symbolic
paradigms as described by Smolensky in the target article. The
reason why Smolensky's hypothesis (10) must be rejected is
that, according to this revised hypothesis, the intuitive pro
cessor is representing and manipulating "partial beliefs" (i.e.,
belief functions whose range is continuous and not discrete)
which cannot be done by a rule-governed processor. Note that
the role of continuity in the connectionist paradigm was also
stressed in Smolcnsky's target article (sect. 8.1.).

Conclusion. In summary, Smolensky's original subsymbolic
hypothesis is too dependent on a characterization of the elusive
"subconceptuaI" level of symbolic processing, and should in
stead stress the role of statistical inference in connectionist
systems. The "continuous" aspect of statistical information pro
cessing relative to discrete logical information processing can
then be used to prove the incompatibility of the symbolic and
subsymbolic paradigms.
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Common sense and conceptual halos

Douglas R. Holsladler
Psychology and Cognifive Science, University of Michigan, Ann Arbor,
Mich. 48104

Paul Smolensky's tar~et articlp, is an excellent clarification of the
position of the connectionist movement in cognitive science.
Since I agree with all its major points, I would like to take the
opportunity to cast these issues in a somewhat different light. I
believe that understanding and explaining the elusive nature of
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common sense will become central concernS of cognitive sci
ence, if they are not so already. I will therefore attempt to draw
some links between connectionism and common sense.

In his one allusion to common sense (sect. 2.3, hypothesis 5b),
Smolensky writes: "The process of articulating expert knowl
edge in niles seems impractical for many important domains
{e.g., common sense)"; this seems to suggest that common sense
is a domain. I strongly believe such a suggestion should be
marked "to be rejected."

"Common sense" is a tern1 used frequently in discussions of
what's wrong with artificial intelligence, yet is seldom if ever
defined. I have heard it suggested that ifan AI system absorbed
vast amounts of knowledge (e. g., the Encyclopaedia Britan
nica), it would possess common sense. I believe this is totally
wrong. An idiot savant who could recite the entire Encyclo
paedia Britannica by memory would almost surely possess less
common sense than ordinary people. I believe common sense is
an automatic, emergent byproduct ofa certain type of cognitive
architecture, and that connectionist architectures - even in
simple stripped-down domains - are much more likely to
exhibit COmmon sense than are the fanciest traditional symbolic
architectures, whether in knowledge-intensive or in stripped
down domains. I thulk it is important to clarify what is meant by
"common sense" and to strip it of its mythical dimensions.

For purposes of clarification, therefore, let us consider a
scenario that clearly calls for commonsense thinking. Suppose
you have invited a close friend for dinner, and she doesn't show
up. From past experience, you know her to be very reliable. As
the hour grows later and later, what do you do? There are all
sorts ofpossibilities, including these fairly obvious and sensible
ones: phone her home; go over to her place, if it's not too far;
guess her most likely route to your place, and trace that route;
phone the police; start eating dinner yourself.

As time passes and you become increasingly concerned,
various less obvious but still fairly reasonable steps will come to
mind, perhaps including the fiJllowing: check your own calendar
to make sure you didn't get the day wrong; phone your friend's
neighbors, friends, or relatives, for ideas or clues; phone or go to
her favorite haunts and see ifshe's at any of them; go back to her
place and leave a note on her door; scour her yard and perhaps
try to get into her house; phone the local hospital; phone her
employer at home.

Once these thoughts are exhausted, you begin to get desper
ate, and therefore some far-out possibilities start coming to
mind, such as: start wondering if you actually did invite her to
dinner, after all; write her an angry letter and tell her she's no
longer your friend; can up somebody else to take her place; ask a
radio station to broadcast an announcement asking her to con
tact you; hire a psychic or fortune-teller to help locate her.

Although it would be impossible to draw an exact boundary
line, there is a point at which ,the ideas that come to mind verge
on the irrational. In fact, the following are ideas that would occur
to a rational person only as humorous thoughts lightening up the
serious mood, if they occurred at all. These avenues are exceed
ingly unrealistic and some of them would require genuine
creative intellectual effort to come up with: take a plateful of
your dinner and leave it on your friend's porch; engage a pilot to
sky~write a note asking her to contact you; tum on the ballgame
on TV and scour the bleachers to see if she might have gone
there; call the New York Public Library reference desk for help;
write to Miss Manners for advice.

Tltis thought experiment conjures up an image ofa "sphere of
possibilities" centered on the given situation, where distance
from the center indicates, very crudely, the degree of im
plausibility involved. Another way to conceive of distance from
the center is in terms of "tension" or "stress," in the sense that
one feels an increasing degree of mental discomfort with the
suggestions in outer layers. As desperation mounts, however, a
kind of "mental temperature" rises, redUcing one's reluctance
to sample regions of this sphere far from its center. This type of
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mental temperature can be taken as a measure of tolerance of
tension.

Let us refer to this sphere of possibilities as the commonsense
halo surrounding the mental representation of the situation in
question (here, that your friend has not shown up). How do
human beings access elements ofsuch a commonsense halo in a
plausible order?

One conceivable way of exploring such a halo would be to
generate all the possible ideas (of which there are a limitless
number, of course) and then to rank them in tenns of ease of
execution, likelihood ofsuccess, and so on, somewhat as a game
playing program looks ahead in a full-width move tree. Clearly
this is nothing like what people do. People effortlessly generate
closer-in, more commonsensical ideas without having to edit
them from a host of further-out ideas.

A more psychologically plausible method for generating a
commonsense halo would be based on heuristics. In such a
method, each situation would address an appropriate set of
heuristics that, given a temperature, would suggest elements of
the halo that have the appropriate degree of wildness. The
problem with this is that situations are unique, and conse
quently the addressing mechanisms would have to be extremely
sophisticated.

I believe the most psychologically realistic model for the
generation of elements of the commonsense halo is based on
the idea that each and every concept in the mind is itself
surrounded by a halo of neighboring concepts. Such a concep
tual halo - elsewhere called an "implicit counterlactual
sphere" (Hofstadter 1985) - is very much like the common
sense halo described above, except that rather than surround
ing a complex situation, it surrounds simply one concept, such
as the notion of contacting someone, or that of "home." Near
the eore of the conceptual halo around "contact" are such
concepts as "phone," "go see," and "write." Further out might
be "dream about," "communicate psychically," and so on.
111ese far-out relatives are accessible only at high
temperatures.

I would like to make it clear that such a conceptual halo is
d,istributed and has no precise boundaries. I conceive of it as an
inevitable, epiphenomenal outcome of "mental topology" - a
vision of concepts as intrinsicalLy distributed, overlapping re
gions in an abstract space (Hofstadter 1979, pp. 652-56;
Hofstadter 1984). (One can of course conceive of concepts in a
more brain-related way - for instance, as distributed, overlap
ping groups of neurons - but that is not necessary for a mental
topology to exist.) According to this view, some concepts -are
very near each other (overlap a great deal), others are vaguely
related (overlap slightly), while yet others are widely separated
(have no overlap). This is hardly novel - it is merely a way of
saying that the mind is associatively structured. Therefore,
when concepts are properly represented in a nlodel (i. e., as
overlapping regions in an abstract space), conceptual halos will
automatically be present; no extra apparatus will have to be
added to the model.

The mental representation of a situation (such -as a friend not
turning up for dinner) is a compound structure involving a
number of simultaneously activated constituent concepts, and
the commonsense halo around that situation is, accordingly, an
automatic consequence of the existence of conceptual halos
around all the activated concepts. In order to construct ele
ments of the commonsense halo, it suffices to probe the various
conceptual halos involved, One at a time or several in parallel,
adjusting the mental temperature. as needed. The degree of
tension or implaUSibility attached to a particular element of the
commonsense halo is a function ofthe distances from the cores of
the various conceptual halos probed, and thus, indirectly, of the
mental temperature. Note the complete lack of heuristics
needed, in this model, to account for common sense.

I would certainly not claim to have captured the full complex
ity of common sense in this sketch, but the imagery is intended
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to show the intimate relation between common sense and a
bonneetionistic (or at least associationistic) architecture of men
fiility. Closely related to my claim about common sense and
subsymbolic architectures is the further claim that, as re
searchers attempt to develop increasingly accurate models of
s~ch other critical features of ordinary human mentality as
memory retrieval, analogy-making, error-making, and
creativity, symbolic architectures will reveal themselves to be
increasingly brittle (Holland 1986), while subsymbolie architec
f:l1res will prove to be increasingly supple (Hofstadter 1979, pp.
570-71). Ofcourse, such issues will not be resolved definitively
for a long time. In the meantime, philosophical treatises of
clarification such as Smolensky's will Serve the vital purpose of
affording researchers a perspective from the forest level, rather
than from the subforest level.

Some memory, but no mind

Lawrence E. Hunter
Computer Science Department, Yale University, New Haven, Conn. 06520

The connectionists have surely done something, but no one
seems to be certain quite what. Smolensky claims there is a high
probability that they will explain all of cognitive science and
provide a unifonn "theory from which the multiplicity of con
ceptual theories ean all be seen to emerge." Although connec
tionism has undoubtedly made a contribution to eognitive sci
ence, this claim seems untenable.

The first problems with Smolensky's claims arise in the overly
broad definition of "connectionism. " The original usage (Feld
man & Ballard 1982) is more restricted than Smolenliky's; there
are earlier network models (d. Grossberg 1976) that meet the
hroad definition. Smolensky's claims are perhaps best taken to
refer to feedforward networks trained using either simulated
annealing or back propagation of error.

These networks and training methods contrihute to cognitive
science a deSign for content-addressable memory. First pro
posed in Luria 1966 (see also Kohonen 1984), a content-ad
dressable memory is one in which the address of a piece of
stored information can be determined (by the memory store
itself) from a retrieval pattem that is similar to the stored
pattem. Such a system is crucial to most theories of cognition.
Although connectionist models thus far lack Some features
desirable in a content-addressable memory! they have advan
tages over discrimination networks (Feigenbaum 1963) and
other serial models.

There are, however, competing theories ofcontent-addressa
hie memory (e.g., Hopfield 1982), and connectionist models'
performance is substantially worse than state of the art in other
domains (e.g., natural language processing [McClelland & Ka
wamoto 1988} or expert problem solving [Touretzky & Hinton
1985]). Furthennore, several of Smolensky's general cIailIl;s
seem incorrect.

First, cognitive science other than connectionism is not en
tirely "constructed of entities which are symbols," and should
not be called the "symbolic paradigm." Some theories in cog
nitive science do depend necessarily on symbolic manipulation
(e.g., variable binding, a touchstone of symbolic processing2).

Nevertheless, much of the analysis of cognitive sc!ence applies
equally well to connectionist and Ilonconneetionist systems. For
example, Smolensky's discussion of semantics and rationality
has nothing whatever to do with whether the system involved
uses symbols or connections; furcllermore, it was arrived at
more than half a century ago by Tolman. According to action
theory (Tolman 1932), organisms strive to map goals to actions,
which produce feedhack (relative to the goals) that guides
change in future mappings. Tolman claimed that one ap
proaches knowledge of the true state of the world through

repeated episodes' of such goal pursuit with feedback Smol
ensky's "suhsymbolic semantics hypothesis" is a restat~ment of
this theory, and I do not see how the validity of the claim
depends on representations ofthe environment being internally
coded as connections.

Smo[ensky labels nonconnectionist cognitive science as
"competence" theory, calling to mind Chomsky's move to
insulate his theory of language from its incorrect predictions
about behavior (Chomsky 1980). Smolensky's label suggests,
without substantiation, that traditional cognitive theories like
wise make incorrect predictions. Perhaps he means that connec
tionism will be able to make predictions regarding phenomena
about which symbolic models must he neutral. This may be the
case, although there are also behavioral phenomena about
which connectionism must be silent, for example, the effect of
synaptic chemistry on reaction time. Theories of ('ognition are
measured by their breadth and predictiveness; Smolensky did
not demonstrate that connectionist theories will be broader or
more predictive than more (or less) abstract characterizations.

Second, connectionism is significantly incomplete as a theory
of learning. Learning, loosely stated, is the improvement of an
organism's ability to achieve its goals on the basis of its experi
ence. Clamping the input and output of the system to a desired
state is not what is traditionally meant by experience. Even
simple, slow learning is more than just fonning associations: It
also requires deciding how much to attend to which potential
stimuli, characterizing stimuli in an appropriate way, and eval
uating the relationship hetween the stimuli and active goals
(Schank et al. 1986). In addition, not all learning is simple or
slow: for example, learning from single experiences (Dejong
1983), learning to seize opportunities' (Birnhaum 1986), and
generating novel explanations (Kass 1986).. Content-addressable
memories are prohably necessary, but certainly not suffiCient,
to pertonn these kinds of leaming tasks. Simulated armealing
and back propagation arc programming techniques for generatw

iog content-addressable memories; they are not models of
learning.

Related to the mistaken idea that connectionist systems are
models of learning is the claim that "solVing the aSSignment of
blame problem is one of the central accomplishments" of con
nectionism. Smolensky's note 9 belies this claim by explaining
that current connectionist systems assign blame by undirected
search through the space of possible assignments (tested by
repeating the training examples tens ofthousands oftimes). This
technique is neither new nor satisfactory. More important, it
assigns blame for error in finding the best match in memory, not
for identifying which states of tIle world or actions of the system
led to some goal outcome.

Finally, there is a difference hetween a theory of a content
addressable memory and a theory ofwhat to put in it. Connec
tionism provides a theory ofhow infonnation is stored in memo
ry, but not what infonnation should be stored. Much valuable
research has been done into techniques for selecting which
objects, relationships, and characterizations should he Com
puted and then stored in order to best further goal pursuit (e. g.,
Schank & Ahclson 1977; Schank 1982; Hammond 1986), These
are (in part) theories of whllt to represent. No connectionist
training algorithm has created a network that can relate long
sequences of sensations and actions to complex goals nearly as
well as existing theories.

Despite vociferous claims like Smolensky's, connectionism's
contribution has been modest. Content-addressable memory is
important, as is the enthusiasm it has whipped up fOr the field of
cognitive science. Connectionism is not a framework (Or a
general theory of cognition, nor for learning, nor even for
representation.

NOTES
1. For example, Baron's description of human associative memory

(Baron 1987) includes a «goodness of match" measure for each input,
and the ability to recall both the best match and associations to it.
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Figure 1 (Hanson). The four possible kinds of representa
tional relations between tokens and types. On the left are two
kinds of hidden-layer Ioealist representations. On the right are
two kinds of distributed representation.

of the phenomena, which are approximate, inaccurate, and
intuitive. Connectionist jargon has already begun to include
intuitive notions of optimal points, local minima, gradient
search, and general optimization notions. TIlis language will
probably evolve naturally with the mathematical theory of
networks and their relation to the phenomena they model. At
this juncture the notion of"suhthings" may obscure rather than
clarify the distinctions between symbolic and connectionistic
modeling.

4. Subsymbols or features? Let me be precise about a simpler
alternative to Smolensky's PTC (proper treatment of connec
tionism); let me call it OTC (the obvious treatment of connec
tionism). In Figure I, I have displayed the possible kinds of
network configurations as a function of input or output unit
representation and the hidden unit representation adopted
through learning (local or distributed). The first case shown in
Figure 1 is what we might associate with the usual symbolic or
rule-based approach; it is ofcourse quite "localist" (i.e., a single
unit constitutes a single symbol). Here the tokens "dog1,"
"dog2," and "dog3" are being mapped to the "dog" concept.
This type ofprocess is the assignment ofa set of tokens to a type.
It is up to other operations to associate the tokens with other
tokens or featural representations of the same type as in, for
example, an inheritance process.

The second case shown is still a kind ofsymholist representa
tion as well as a case of local representation. In this case,
however, tokens are first decomposed into a set of primitive
features or composite types which cover all the possible tokens

. in the domain. So in the present case, "barks," "has fur,"
"breathes," and "has spots" are examples ofa set offeatures that
might be used to describe dogs and other animals. Schank's
(1975) Conceptual Dependency approach is an example, with
the tokens in the domain first mapped onto a set ofgeneral types
or features (P-TRANS, a physical transfer of information). Other
operations such as planning or problem solving would involve
the manipulation of this sort of general feature infomlation.

The third case is the first simple instance of a distributed
representation: The hidden layer is representing the tokens as a
set of types or features that would cover all the possible tokens in
the domain. In fact, exactly the same kinds offeatures could be
used as in the second localist case just mentioned. The only
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2. Despite Smolensky's aS5ertion, llsing essentially the same seman
tics as English words is not such a touchstone (cf. Schank & Abelson
1977).

On the obvious treatment of connectionism

Stephen Jose Hanson
Bell Communications Research, Morristown, N.J. 07960; Cognitive Science
Laboratory, Princeton University, Princelon, N.J. 08544

1. The claIm. It hardly seems controversial that connectionist
models can be formally interpreted as doing statistical inference
and minimizing differential equations. The controversial aspect,
of Smolensky's target article concerns the way he wishes to
clmracterize these familiar, numerically relevant mathematical
systems. His claims seem to be motivated by what might be
called the "strong implementational view of connectionism."

H a symbolist theory of, say, phonology exists, then showing
that it can be represented in a connectionist system provides no
new information about phonology or about what the theory of
phonology should look like. Connectionist modelers must look
at the theory of phonology and use insights from that theory to
develop their connectionist model. It becomes merely an imple
mentational account.

Given the strong implementational view, it would seem
critical to be able to show that connectionist models have some
special properties that give them new computational abilities
and representation~ semantics that do not or in pJinciple
cannot appear in symbolist accountS. What is needed, according
to Smolensky, is the subconceptuallevel- with subsymbols and
subthoughts and subbehavior and subcognition - which repre
sents the proper level of analysis for the study of the mind and
cognition. Smolensky argues that these "suhthings" are somew

where between things and neurons; consequently, they are
neither things nor neurons but can be made to approximate
things and neurons.

Let me try to list some of the presuppositions of this cllarac
terization ofconnectionist models and to provide an alternative
account of what connectionist models gain from distributed
representation and why connectionist models are not merely
implementational.

2. Symbolist theories aren'tcomplete, nor are theycorrect. One
presupposition of Smolensky's approach seems to be that sym
bolist (lUle-based) accounts of psychological phenomena are
correct, complete, consistent, and served up on a silver platter.
I daresay it would not be hard to find lots ofcounterexamples to
this assumption.

A second tacit assumption of this strong implementational
view seems to he that theory development is not affected by the
medium and axioms of the mQdel used to implement the ideas.
Although verbal theories are not that easy to come by, it is just as
hard to express theories in a detailed formal system, perhaps
harder. Much of the original intent of the theory and goals may
be lost in a particular furmalization.

It is clear, however, that the constituents and structure of the
model can help or perhaps impede theory development; the
theory and the modeling environment interact to make the parts
of the theory vulnerable and to bring out relations among
variahles that the theory may only hint at or not refer to at all.
Connectionist models may provide just the sort of constituent
structure that many symbolist theories badly need.

3. Differential equations and symbols can get along. Do we
really need a new language and tenninology for standard mathe
matical systems and their effects? Differential equations have
had a long history in the natural sciences and they of course
differ from recursive rule systems; probability models likewise
differ from boolean models in their form of expression. What
becomes difficult to reconcile is (1) the technical jargon that
arises within the mathematical system and (2) folk descriptions
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difference between this distributed representation and the
localist representation is that the feature decomposition is a
function of the weight connections which encode the relations
between the tokens "dogI" (etc.) and the feature values in the
hidden layer representing the "dog" concept, "barks" and so on.

The fourth and last case is completely distributed between
the input representation and the hidden layer. In this case there
exists a featural representation in both the input layer and the
hidden layer. It would be most useful to have specific features
with specific tokens (dogI is composed of "fido," "barks,"
'~floppy ears," etc.) and to allow these to be recombined in the
hidden layer in order to "construct" the dog concept. We might
also allow new features to be constructed or to emerge from a
':deeomposition" of our originally chosen features. So in the·
hidden layer "dog" tokens would tend to activate "bark,"
"breaths," "wags tail" and perhaps co-occurrences (or n-tuples)
ofgeneral features, "barks and wags tail." In this case we would
not have to indicate which hidden unit belonged to which
feature in the input layer. These hidden-unit feature-bindings
could be discovered during learning.

At this point one might wonder what is so remarkable about
distributed representation. The four cases we have discussed
ar(l not really antithetical to symbolist approaches, nor do they
provide any exceptional new view on representation that sym
bolists haven't already thoroughly considered. Featural repre
sentations are not new or very difficult to characterize; they date
back to Aristotle.

What then distinguishes the connectionist representations
from any other kind? We begin to see a bit of it in case 3 where
tokens are being mapped to featural representations. The dif
ference between this case and case 2, where featural representa
tions are chosen a priori for the domain and its tokens, is that the
representation between the token and its features is made
visible. It is now obvious from the connection strengths what
token "dogl" is made up of, plus the representations that
determine its composition are readily accessible, visible, and
shared l among all other tokens in the domain. This visibility or
accessibility of the network representation is what distinguishes
it from the localist/symbolist representations in which such
information has been committed to the representation lan~

guage. This difference is one of the reasons why learning is
possible and so natural ror connectionist networks. In contrast,
symbolic approaches must somehow make dear to the learning
operations they use what aspects of the representation were
responsible for some event; and worse, they must track down
the "hidden" infonnation initially assumed or eVen axiomatized
in the representational language and make it visible to those
same learning operations.

This focus on learning now makes it crucial to understand the
intentional feature and mapping operations once they have been
learned. In some sense the representation problem has been
turned on its head. Instead of asking what the proper feature
representation is for a cup or a chair, connectionists want to
know under what conditions the proper featural representation
would be learned for cups or chairs.

NOTE
1. This leads to the problem ofhow to extend the feature "lexicon" of

the network. This too is not new. Any representational scheme that uses
features must encounter this constraint at some time or another.

Smolensky, semantics, and the sensorimotor
system

George lakoff
Ungu;stics Department a.nd Institute for Cognitive Studies, University of
California, Berkeley, Calif. 94720

I admire Smolensky's attempt to characterize the relationship
between connectionist research and more traditional issues in

cognitive science. My comments are of two sorts: some clarifica
tions where I think Smolen.sky might have said things a little
better, and ....ome important areas that he did not treat, hut
which are consistent with his overall approach.

Some clarificatIons. In mentioning the "conceptual level",
Smolensky does not mean to return to the sym bol-manipulation
paradigm. His "conceptual level" is not a kind oflogical form
(!lay, of the old generative semantics variety) nor a Fodorian
"language of thought." Smolensky's "conceptual leveI," as I
understand it, would have to conform to the mathematics of
dynamical systems, and not to the mathematics of recursive
function theory and model theory. I will.say more below on how
that might be done.

A possible misunderstanding may arise from Smolensky's use
of the word '<level." This word is used in the academic world in
at least two senses. In linguistics, levels are taken to be distinct
representations of different kinds, with correspondences be~

tween elements across levels. For example, many linguists
speak of the phonetic level, the syntactic level, and the semantic
level, with the assumption that these are three different kinds of
representations. This is not what Smolensky has in mind.
Instead, he has in mind ~omething more like the physicists'
notion of level, as in the subatomic level, the atomic level, the
molecular level, and so on.

Thus, Smolensky's three levels are not thtee different kinds of
things. There is the neural network of the physical brain: This is
the neural level. There is the aspect of the physical brain
(namely, the neural structure and activity) that connectionism
picks out to model: This is the subconceptua1level. And there is
a structure to the activation patterns of that aspect of the brain's
neural network that connectionism models: This is the concep
tual level. Both the subconceptual and conceptual levels are
aspects of the neural networks of the physical brain and their
activity.

I assume that this is what Smolensky has in mind, and will
proceed from here.

Semantics and the sensorimotor system. Smolensky's discus~

sion makes what I consider a huge omission: the body. The
neural networks. in the brain do not exist in isolation; they arc
connected to the senSorimotor system. For example, the neu
rons in a topographic map of the retina arc not just firing in
isolation for the hell of it. They are firing in response to retinal
input, which is in turn dependent on what is in front of one's
eyes. An activation pattern in the topographic map of the retina
is therefore not merely a meaningless mathematical object in
some dynamical system; it is meaningful. A different activation
pattern over those neurons would mean something different.
One cannot just arbitrarily assign meaning to activation patterns
over neural networks that are connected to the sensorimotor
system. The nature of the hookup to the body will make such an
activation pattern meaningful and play a role in fixing its
meaning.

Compare this, We example, with a string of symlXJls in a
Fodorian language of thought, or in a computer program. The
symbols are not meaningful in themselves. They have to he
"given meaning" by being associated with things in the world. H
the symbols are to stand for categories, those symbols mu.st be
given meanings by being associated with categories that are out
there in the world. In my recent book (Lakolf 1987) I survey a
wide range of evidence showing that such a project is impossi
ble, that the symbolic paradigm cannot have a viable theory of
meaning.

Interestingly enough, in the evidence I survey there is not
evidence against a connectionist account of meaning. The rea
son is that activation patterns overneurons can be meaningful in
themselves when the neurons are appropriately located relative
to the sensorimotor system. Such activation patterns do not
have to be "given meaning" the way that strings of symbols do.

The point of all this is that, counter to what critics like Fodor,
Pylyshyn, Pinker, and Prince have said, it is connectionism, not
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the symbolic paradigm, that is the only game in town. And it is
the connection to the body that makes connectionism a player in
the semantics game.

Invariance and cognitive semantics. Connectionist semantics
is, of course, not highly developed at present to say the least.
But all that could change in a short time. The reason is that
cognitive semantics, as it isbcing.devcJoped within linguistics,
meshes well with connectionism.

The basic mechanisms of cognitive semantics include cog
nitive topology, mental spaces, metaphor, and metonymy.
Technically, cognitive semantics is consistent with the conncc
tionist paradigm but not with the symbol-manipulation para
digm. One reason is that cognitive topology, which provides for
the basic mechanisms of reasoning, is continuous rather than
discrete.

At present there is a gap betwcen connectionism and cog
nitive semantics: We donot know how cognitive topology can be
implemented in connectionist networks. SUcll an implementa
tion should be possible. The key, I believe, is what I have been
calling the "invariance hypothesis." The idea is this: Each of the
elementary structures ofcognitive topology - bounded regions,
paths, contact-versus-noncontact, center-versus-periphery,
etc. - have to be preserved in mappings from one modality to
another in order for sensorimotor control to be successful. It is
hypothesized that activation patterns corresponding to such
structures arise in the development ofsensorimotor control, and
are mapped onto structures l of abstract reason by the connec
tionist mechanism for characterizing metaphor: mappings from
one neural ensemble to anotheL' across a narrow channel. The
structures studied in cognitive topology are called «image sc:he
mas" (or sometimes merely "images"). The best places to read
about them are in Lakoff, 1987, case study 2 and in Langacker,
1987.

Conclusion. In applying connectionism to issues in cognitive
science, it is important not to think of it as just another mode of
information processing, in parallel instead of in sequence. In a
full-blown connectionist theory of mind, activation patterns
over neurons are meaningful in themselves by virtue of what
those neurons are connected to. The intractable problem of
assigning meanings to symbols does not arise here.

It is also important to remember that the isolated models
connectionists build to study the properties ofnetworks arc not
full-blown connectionist theories of mind. They vastly over
simplifY, or totally ignore, sensorimotor input and output,
assulning that, for the purpose of the study at hand, onC can just
as well use feature names, to which the model-builders must
assign meanings. This is a crucial diffenmce between isolated
models and a full-blown theory.

There is anothel· in1portant difference. What neural networks
can do is constrained in the full-blown theory by the nature of
the sensoIimotor system. For example, consider what connec
tionist phonology in the full-blown theory would be like. Pho
nological processes, in large measure, would be characterized
by conventionalized activation patterns controlling articulatory
and acoustic processing. This would help to limit the general
principles embodied in phonological patterns to those that are
phonetically realistic. In symbol-manipulation phonology (that
is, generative phonology), no such restrictions are automatically
built into the theory. However, since such sensorimotor con
straints are not built into the isolated"models, those models do
not embody the constraints of the full-blown theory. Thus,
where the full-blown theory can offer phonetic explanations for
constraints on phonology, the isolated models cannot.

For such reasons, it is vital to bear in mind that a full-blown
connectionis~ theory of mind is a lot mure than just an infonna
tion-processing system.

NOTE
1. For example, ideaU7.ed cognitive models, grammatical construc

tions, image-schemas, etc. (see Lakoff 1987 for details).
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Physics, cognition, and connectionism: An
interdisciplinary alchemy

Wendy G. Lehnert
Department of Computer and fnformation Science, University of
Massachusetts, Amherst, Mass. 01003

As the symbolic/subsymbolic debate rages on I've noticed many
of my colleagues in the so·called mainstream synlbolic AI
community bacldng off from public debates on the matter. In
AI, one normally doesn't talk about anything for more than two
years unless the idea is generating about a dozen Ph. D. theses.
But that's just one partofthe story. In nuth, alot ofus have first
hand experience with graceless degradation and we understand
very well about the desirability of soft constraints: My seman
tically orientcd colleagues in natural language have understood
about SUcll things ever since the early days of preference
semantics (Wilks 1978). Even so, the desirability of soft con
straints does not negate the validity of the symbolic paradigm.
Although Smolensky does not advocate that we abandon sym
bolic information processing, there is nevertheless something
facile about his conciliatory conclusion depieting one big happy
family where everyone can ·peacefully coexist.

The flrst thing I noticed about connectionism was how the
psychologists picked up on it long before the AI cOllununity got
interested. Initially this seemed puzzling to me, but then' it
made perfect sense. The interdisciplinary appeal of connec
tionism is not so much a computational appeal, as it is an appeal
based OIl theorem envy. We must also understand that the
problem of theorem envy has always been stronger in psychol
ogy than it ever was in AI. This is undoubtedly because graduate
students in eomputer science who harbor a strong desire to be
mathematicians have the option of becoming theorists in com
puter science. In graduate psychology programs, there seems to
be no analogous safety valve for those seeking rigor in their lives.
Or at least there wasn't until the early '80s.

In recent years connectionism has come to the rescue ofa new
generation of psycll010gists who are really closet mathemati
cians and physicists. Unfortunately, there is one aspect of
theorem envy which is a serious threat to the health ofcognitive
science: methodology-driven researcl1 at the expense of prob
lem-driven research.

Here is where I find connectionism potentially dangerous:
Most connectionists are methodology-driven. The connec
tionists who claim to be doing neural modelling are clearly
methodology-driven (see, for example, Clmrchland 1986). Even
the researchers who distance themselves from neural modelling
are methodology-drivcn in slightly more subtle ways. Smol
ensky is a good example of this. A central thesis of his target
article places subsymbolic processing above the neural level, so
Smo[ensky's view of connectionism does not derive ffom neu
rophysiology. Rather, Smolensky hopes to wed the natural
sciences to cognition by deriving the cognitive principles under
lying subconceptual processing from physics. He takes a narrow
view of dynamical systems as the proper foundation for subsym
bolic processing, and t11en atten1pts to distinguish dynamical
systems that are cognitive from dynamical systems that are

. purely physical. This is a methodology-driven argument which
positions the methodologies of physics at the center of Smol
ensky's view of connectionism. However powerful these trap
pings are for thos(~ who feel reassured by equations, a fondness
for physics and its associated mathematics has narrowed Smol
ensky's view of conneetionisn1, cognitioll, and computation in
general.

We see Smolensky-the-physicist at work in the "connec
tionist dynamical system hypothesis" which describes an intu
itive processor in tern1S ofdifferential equations. Not content to
stop there, he proposes a definition for cognitive systems which
inlplies that the only difference between a cognitive person and
a lIoncognitive thermostat is a matter of degree (pardon the
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pun). putting aside the problem of defining cognition on a
,o;lippery slope, there are aspects ofSmolensky's perspective that
seem fundamentally correct to me. For example, I agree with
his emphasis on process over structure. But we should re
IIlcmber that this shift in perspective was one ofthe foundational
co~tributions of symbolic AI.

While it is indeed wonderful to see a connectionist system
~1l:hibit nonrnonotonic inference with respect to the past-tense
verb production (Rumelharf & McClelland 1986), let us not
forget that one of the most exciting things about EPAM was its
ability to exhibit oscillation effects a" it learned (Feigenbaum
1963). There is a remarkable tendency for methodologically
driven researchers to feeljustified in dismissing as inconsequen
tial any work done outside of}heir own methodology.

A problem-driven research~ris happy fo use any techniques
or methodologies that fit tht; problem at hand. If a computer
program can be described in tenns ofdifferential equations, one
should not hesitate to exploit appropriate mathematical results.
Bravo. Buf Smolensky is not content to stop fherc. He wants to
argue that the connectioni~tdoorway info nondiscrete mathe
maUcs presents profound and revolutionary implications for the
study of cognition. This is where Smolensky and 1 must part
company.

The role of discrete versus continuous mathematics in theo
ries ofcognition is a non issue if we resist methodology-driven
reasoning. The more important question is whether or not
knowledge can be modularized, accessed at variable levels of
abstraction, and manipulated with procedures appropriate to
those different levels of representation. That is, the real proh
lems we should address in trying to distinguish subsymbollc and
symbolic processing are representational problems,

Unfortunately, knowledge representation is not one of the
strong points within the connectionist paradigm, To say that
knowledge in a connectionist computer program is manifest
within a system ofweights and differential equations is not only a
retreat from symbolic meaning representation, it's a retreat
from meaning altogether. In fact, I would argue that the concept
of "distributed representations" works for wnnectionists the
same way the concept of a "kludge" works for symbolic AI
researchers, They are both absolutely necessary, undeniably
convenient, abused with wild abandon, and potentially disas
trous in the long run. If pressed, we throw up our hands and
admit that we don't quite understand what we're doing here.
But a clever kludge is not immediately apparent - and dis
tributed representations are quite clever: It's very hard to see
what's wrong at first glance.

The distributed view of representation promises to deliver a
lot of tempting goodies: Soft constraints, grac~ful degradation,
"best fit" pattern matching algoritlnns, leaming from examples,
and automatic generalization are nothing to sneeze at. Unfortu
nately, the reductionistic nature ofa distributed representation
also makes it extremely difficult to do the simplest things, We
can identify a room based on a description of its furniture
(Rumelhart, Smolensky, McClelland & Hinton 1986), but we
have no natural way of identifying the relationship between the
room and the fumiture - they are only associated with one
another in some unspecified amorphous manner (Charniak
1987), A similarly fundamental problem arises with variable
bindings (Feldman & Ballard 1982; Sh.,tri & Feldman 1985).

To be fair, a lot ofconnectionists are seriously addressing the
question ofrepresentational power (Hinton 1986; Cottrell 1987;
McClelland 1987; Pollack 1987; Shastri 1987; Touretzky & Geva
1987), so we cannot assume that Smolensky has chosen to ignore
representational issues for lack of activity in this area. Rather,
Smolensky appears to acknowledge fhe role of representational
power only as a "conceptual" issue which divorces it from the
concerns of subsymbolic processing in his dichotomy.

If we accept Smolensky's-criteria for separating the wncep
tualfrom the intuitive and the symbolic from the subsymbolic, it
is easy to go along with his view of "soft adaptive" processes

underlying "hard and brittle" rule application. If representa_
tional issues are defined to be purely conceptual phenomena
which need never intrude into fhe fonnal sanctify of numeric
vectors and differential equations, then the prospect of sym
bolic/subsymbolic tmfwars does indeed seem remote. But I'm
not buying the Smolensky scenario. Representation is closcr to
the heart of the matter than Smolensky would have us believe.

Can this treatment raise the dead?

Robert K. Lindsay
Mental Health Research Institute, University of Michigan, Ann Arbor, Mich.
48109

Much of the appeal of connectionism is that it is a form of
associationism wifh a long history in philosophy and psychology;
associationism's most recent preconnectioni.st incarnation was
behaviorism, whose demise was in large part due to its failure to
solve, or even recognize, several 'key problems for which sym
bolic models have well-understood and indeed almost obvious
natural solutions. Here are rhe most important: How is it
possible to add new knowledge and abilities without disrupting
the old? Howis it possible to add new knowledge so that it builds
on the old? How can knowledge and process be structured
hierarchically? How can alternatives be formulated and consid
ered systematically? How can directed, logical, precise thinking
be achieved, as it undoubtedly is by humans at least occasion
ally. The first major question to address to connectionism is
whether it can supply solutions to these problems. So far it has
not. What does it offer instead?

1 think the target article offers two different (though not
incompatible) visions of connectionism, and each suggests a
different advantage over symbolic models. The first seeks finer
grained and mOre "accurate" accounts of the macrophenomena
allegedly only approximated by symbolic models. In this vision,
subsymholic is to symbolic as quantum mechanics is to classical
physics. _
'-'Th-~ second vision is also reductionist, hut it sees the subsym
balic as offering a different kind of account. In this vision,
subsymbolic is to symbolic as dynamical systems theory is to
classical aufomata theory, or as evolution is to learning theory.
These two visions correspond to the two major distinctions
between the paradigms and their mechanisms of semantic
representation and learning,

To avoid the perennial problem of arguing for substantive
differences in computational power in the face ofTuring equiv
alence, Smolensky attempts to distinguish syntactic equiv
alence from semantic equivalence. If we buy that, then the
substantive subsymbolic/symbolic distinction is that symbolic
models have single symbols that refer to single concepts, where
as in subsymbolic models the analog ofa symbol is a "pattern of
activity" among a set of units, This cfitical distinction is not
made precise in the target arlicle, and possibly it cannot be.

Indeed, symbolic models often deal with concepts that are not
represented in a simple one-symbol-to-one-concept manner, A
symbol may denote an internal state of arbitrary complexity and
one that changes over time. What distinguishes this representa
tional mode from the subsymbolic one is that it need not be
unuorm, it is hence potentially richer, and it has a name that
other structures can refer to (a crucial advantage).

Smolensky's analysis goes wrong not in describing the sub
symbolic, but in an impoverished view of the symbolic level.
His characterization of the latter (the most explicit being (24)) is
closer to alimited type ofsymbolic model, rule-based system. ]f
we are denied the refuge ofTuring equivalence on the grounds
of semantic distinctions, then I reserve the right to distinguish
symbolic models in general from the special case of mle-based
models in spite of the proven (syntactic) computational univer-
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sality of production rules. Perhaps recognizing this objection,
having given his characterization of symbolism, Smolensky
waffies: "anyone of them [the discrete characteristics of sym
bolic models] can he softened, but only by explicitly building in
machinery to do so." Of course to a "symbolist," explicitly
building in machinery is how the game is played, so to admit that
it can be done is a serious concession. Indeed, ifone looks at the
extant AI symbolic models more broadly they do not unoomlly
differ from subsymbolic ones in the ways described, but only in
explicitly eschewing the desire to be reductions-to-associa
tionism and one-principle learning.

A major case in point is constraint satisfaction. Connectionist
writings are at their most compelling when they argue that
much of human cognition must be viewed as multiple, simul
taneous constraint satisfaction. Many symbolic models, say, of
natural language understanding, do indeed prescribe a different
view: a serial narrowing of possibilties by a sequence of neces
sary-condition filters in the fonn of syntactic and semantic welI
formedness rules. Howevcr, the clitical distinction between
this and the constraint view is not whether all constraints can be
uniformly represented (they need not and probably should not
be), but whether the "rules" of agreement, deixis, logic, phys~
ical plausibility, conversational convcntion, and so on, are
viewed as necessanJ conditions; the symbolic paradigm does not
require that they should be. Furthermore, these linguistic,
logical, and empirical constraints are quite naturally charac
terized at the symbolic level as a heterogeneous set, and the
compelling hut infonnal connectionist arguments for constraint
based processing are usually presented in similar terms; it is
unjustified to identify this characterization with the infini
tesimal, nonreferential, amorphous "constraints" of subsym
bolic models.

The vision of connectionism as reformulation has a literature
essentially distinct from the fme-grain-semantics vision just
discussed. It is typified by Smolensky's hannony theory, for
example, and it attcmpts to demonstrate how general features of
inteHigence can arise from a uniform morass ofassociations by a
unitary learning mechanism. The higher cognitive functions are
explained indirectly and obliquely by showing how they emerge
from a process ofadaptation. These efforts have thus far had very
limited success.

What Smolensky is offering in Scctions 8 and 9 is something
quite different from the symbiotic account he offers earlier. It
goes beyond an alternative account of established cxplanations
to an entirely new analysis that will raise new questions and
supply new answers. For example, one can envision connec
tionist accounts of the limits of predictability (perhaps ba<;ed on
the concept of "chaos") that explain the landscape of cognition
without oHering detailed predictions of why John Doe chose
chocolate rather than vanilla today, or even why some chess
players are better than others.

Connectionism gives up a lot when it abandons the successes
of symbolic modelling; ultimately it must replace what is lost,
but the path to that integration is not clear. Some of what it
hopes to gain - the neuroscience connection - is illusory. Some
reputed gains, for example, multiple soft constraint satisfaction,
are well within the symbolic paradigm in principle if not in
current fushion. One claimed accomplishment - a general
learning mechanism - is thus far unproven on problems of
realistic magnitude, and the suggested quest for parsimony is
probably premature. But what remains could he the seed of a
refomlUlation of the goals and scope of cognitive science.
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Connectionism in the golden age of
cognitive science

Dan Lloyd
Department of Philosophy, Trinity College, Hartford, Conn. 06106

Subsymbolic and symbolic paradigms. Smolensky rejects hy
pothesis 10, thc ecumenical view that cOlmectionist models are
mere implementations of symbolic models and their concep
tual-Icvel explanations, a view implying that orthodox cognitive
science (the Newell~Sil1l0n-Fodor-Pylyshynview) remains the
only genuinely cognitive game in town. Against this, Smolensky
asserts (Bc) that "complete, formal, and precise descriptions" of
intuitive cognition will only emerge at the subconceptuaI level
of connectionist models. (The dosing lines of Section 2 seem to
extend this claim to cognition in general.) Apparently the
argument is roughly this: Since there will he no neat formalisms
at the conceptual/symbolic level, there is nothing for the neat
formalisms at the subconceptual/subsymbolic level to imple
ment. This is a weak ground for the autonomy ofconnectionism:
Who knows whether there may someday emerge a neat concep
tuallevel model of cognition? Properly treated connectionism
should not, I think, stake its future on the failure - a scruffiness
that Illay be corrigible - of an allied cognitive enterprise.

Rather, connectionism might well illuminate the successful
formal treahnent of cognition at the conceptual level The
autonomy of connectionism would then fest on distinctions
between models (at the conceptual level), rather than on the
distinction between levels. Models at the conceptual level
should be the central aim ofconnectionism in any case: After all,
we seek true psychology rather than subpsychology; we want
our neatest formalizations to quantuyover thoughts, beliefs, and
representations in general, rather than over merely sub
thoughts, subbeliefs, and subrepresentations.

The details of the conceptual level connectionist model of
cognition are presently an open question, perhaps the open
question, of connectionism. The familiar connectionist choice
between local and distributcd representation understates tlle
theoretical challenge of conceptual level connectionism. First,
"distributed representation" remains ambiguous in connec~

tionist parlance. Sometimes individual processing units are
assigned to features in the task domain, as, for cxample, in the
circuit analyzer model described in Section 9.2. But sometimes,
in contrast to featural rcpresentation, individual units are be
neath all interpretation. Such represcntations are fully dis
tributed, and no unit is dedicated to thc representation of any
particular aspect of thc task domain. But discussions of connec
tionism rarely distinguish these intcrpretative options.

More important, in practice most connectionist models use a
mix: of representational styles, often with local or featural repre
sentations sandwiched in between. As Terry Sejnowski (person
al communication) and Smolensky (Section 3) both observe, this
heterogeneity makes the interprctation of networks at the con
ceptuallevel extremely complex. Expressed at the conceptual
level, representations are local (since conceptual-level hypoth
eses refer to representations rather than their substrate), but
their dynamics are complex, and not the dynaJI:lics of subcon

.ceptual unit interaction (expressed by the activation and learn
ing equations). New interpretative applications of the analytic
tools of Iinear algebra will bewelcOlne here. (Smolensky, 1986
and Section 3, and Sejnowski and Rosenberg, 1987, are among
the pioneers in this enterprise.) I think it's in keeping with the
spirit of the target article and connectionism overall to aspire to
discover neat fonnal principles at this higher level, since the
principles will be distinctly connectionist.

Connectionism and neural models. Smolensky also dis
tinguishes connectionist models from neural models. Hypoth
esis (12) summarizes the differences; (12c) reminds us that we
don't know much about the neural details and seems to be the
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p"'ll)ise on which the distinction rests. But our ignorance of the
details is another temporary problem. Like the distinc

between connectionist and conceptual-level hypotheses,
distinction is a shifty base for the autonomy of connec

Suppose we had all the relevant neural details, and
them tu build a model of t.'Ognition. Neural dynamics are

more complex and heterogeneous than those ofcurrent connec-
tionism, but I presume that it isn't essential to connectionism
that its dynamic principles be as simple as those of today's
models. A total neural model would therefore nonetheless be a
~nnectionist model.

Connectionism also needs all the neural inspiration it can get.
At this writing, about one year has passed since the thundering
arrival ofthe two-volume cavalry charge of the San Diego PDP'
group (Rumelhact & McClelland 1986; McClelland & Rumel
hart 1986). Workers loyal to the symbolic paradigm have had a
year to rally their forces, and as these words see print the
cognitivist countercharge should be underway, with each con
nectionist model the ground of a pitched hattIe. I expect the
pennant in 1988 to he do toss-up: Botll the subsymbolic and
symbolic approaches will celebrate their successes, and each
will be able to point to flaws and omissions, often in great detail,
ofthe other approach. But there is one important foundation for
cognitive modelling exclusive to connectionism, and that, of
com"se, is its "neural inspiration." At present, it would be bad
tactics to abandon the goal of incorporating as much neural
reality as possible. More important, the likeJillood of connec
tionist models being true increases with the incorporation of
neural dynamics.

The golden age. Smolensky's hypothesis 11 posits a funda
mental level for the subsymbolic paradigm, distinct from both
the conceptual and neural levels. Following from the discussion
above, I suggest the following substitution for hypothesis 11:

(II) The fundamental level of the subsymbolic paradigm
encompasses both the neural and conceptual levels.

The golden age of cognitive science will be one in which
(thoroughly understood) neuroscience (thoroughly) informs
(thoroughly understood) conceptual level cognitive psychology.
Connectionism as an autonomous science in the middle serves
to catalyze the development of the golden theory, but one
upshot of the two compressed discussions above is that connec
tionism, as a discipline in the middle characterized by the
straightforward dynamics of numerous homogeneous pro
cessors, will fade away. Its sublimation is no loss, however, since
the science it establishes will be connectionist in spirit. It will be
the fulfillment, not the refutation, of the promising approach
exemplified in Smolensky's target article.

Symbols, subsymbols, neurons

William G. Lycan
Depaltment of Philosophy, University of North CaroOna, Chapel Hill, N.C.
27514

This decade past, the philosophy of cognitive science has
mongered a number ofclosely related distinctions: Software vs.
hardware; dry abstract computation over predicate-calculus
formulas vs. wet biologic cell chemistry; printed circuitry vs.
warm fuzzy squirmy animals; pleasant air-conditioned high-tech
computer center vs, cleaning out smelly cages; MIT vs. south
ern Califomia. Great virtues ofSmolensky's target article arc his
rejection of such stereotypes, his recognition of the lush multi~

plicity oflevels ofnature, and his attempt to clarify the relation
between several of the levels as they are simulated in connec~

tionist computer programs. Pardon my mentioning it again
(Lycan 1981; 1987), but the all-too-common two-Level picture

of nature - of brains, in partictllar, or even of computers
themselves - is both completely untenable and responsible for
many very bad ideas in the philosophy of psychology.

I want to address the compatibility issue raised by Smolensky
in his Section 2.4, particularly since it bears on the meth
odological advice he offers in closing. According to the "subsym
bolic paradigm," only the subconceptuallevel, not the concep
tualleveI, affords "complete, fonnal, and precise description!> of
the intuitive processor," Ipso facto, Smolensky argues, the
"symbolic paradigm" would be ruled out, since it claims pre
cisely to afford such descriptions at the concepttlaJ level. Thus
incompatibility.

That seems right on its face, but we should consider a simple
irenic response: In his next section (sec also 7.1), Smolensky
grants that representation occurs within (not just as an epi
phenomenon of) the "subconceptual" level, and that connec~

tionist models key on "fine-grained features such as 'rounded
ness preceded by frontalness and followed by backness"> (sect.
3, para. 2). The obvious objection is: Why does this keying itself
not count as fully conceptual, fully symbolic activity? A first
reply might be that the features 'or concepts thus mobilized are
not ones that occur in the subject's own working vocabulary, But
nothing in the symbolic paradigm implies that they should.! A
second reply might be that the topology is all wrong; symbolic
paradigm computation is linear, pmoflike, qiscrete, monotonic,
and so on, whereas connectionist architecture differs in the
fairly drastic ways Smolensky has described. But if subsymbols
are still representors manipulated Ilccording to precise rules,
they are still symbols, expressing concepts, in any traditional
sense of those terms;2 the only question remaining concerns
what the rules actually are. So far, the subsymbolic paradigm
seems to belie its own claim ofrelocating real cognition to a truly
subconceptuallevel of description (and· so it threatens its own
alleged claill) [8c]).

There is of course the issue of morphology. In the symbolic
paradigm, a representation-token is a fairly salient chunk or
stretch of hardware-at-a-time. In the subsymbolic paradigm,
the token - though it exists - is distributed or highly scattered
through the system, morphologically foggy or invisible. 111M
paradigm difference is potentially important to computer sci
ence and to psychology, for all the reasons Smolensky pre
sents. But its importance to the theory of representation gener
ally is less clear. I can think of just three differences it would
make in tum: (A) Though the subsymbolic paradigm allows for
higher~Ievel intentional reference to the external world by
regions of hardware however scattered, such reference could
not (according to the paradigm) be characterized in the terms
normally considered appropriate to the computationally rele
vant higher level. As Dennett (1986, p. 69) has noted, the
"brain~thingamabob [that] refers to Chicago" would per se
have to be described statistically and in tenns of the whole
connectionist system or a very large mass of it. (B) The subsym~

boIic paradigm vastly complicates any account of the inten
tionality of ordinary folk-psychological representations and of
anything in standard "symbolic" theory that is at all like them.
In Section 7.1 Smolensky makes a start at trying to capture
ordinary mental reference, but his attempt is both vague in the
extreme and apparently circular. (C) As Smolensky argues in
Section 9.2, the subsymbolic paradigm sheds considerable
light on the vexed competence/performance distinction, as the
symbolic paradigm does not. And I would add that it makes
that distinction cognate with Davidson's (1970) otherwise trou
blesome thesis of tIle "anomalism of the mental"; if the sub~

symbolic paradigm is right, then there are no strict psychologi
cal laws that can be couched in commonsensical Englisll or
even in real-time linear-computational terms. On the other
hand, we can profitably see such laws as true under natural if
extreme idealizations of "well-posedness" and unlimited time.

To settle the incompatibility issue we would have to bicker
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further over just what is required for being genuinely "concep
tual" or "symbolic." Questions (A)-(C) are perhaps more impor
tant for cognitive science and its metatheory.

NOTES
1. Except possibly the idea that the symbols in use at the conceptual

level are closely derived from those occurring in the propositional
attitudes posited by folk psychology. But that idea plays no role in the
issue that officially concerns Smolensky.

2. Barring one in which conceptual activity must be conscious. But
here again, despite Smolensky's occasional allusions to consciousness,
the notion has no relevance to the debate between his two paradigms.

Epistemological challenges for
connectionism

John McCarthy
Computer Science Department, Stanford University, Stanford, Calif. 94305

1. The notion that there is a subsymbolic level of cognition
between a symbolic level and the neural levcl is plausible
enough to be worth exploring. Even more worth exploring is
Smolensky's further conjecture that the symbolic level is not
self-sufficient, especially where intuition plays an important
role, and that the causes of some symbolic events must be
explained at some subsymboJic level. That present-day connec
tionism might model this subsymbolic level is also worth explor
ing, but I find it somewhat implausible.

An exan1ple of Smolensky's proposal is that the content of
some new idea may be interpretable symbolically, but how it
came to be thought ofmay require a subsymbolic explanation. A
further conjecture, not explicit in the target article, is that an AI
system capable of coming up with new ideas may require a
subsymbolic level. My own worl,<: explores the contrary conjec
ture - that even creativity is programmable at the symbolic
leveJ. Smolensky doesn't argue for the connectionist conjec
tures in his paper, and I won't argue for the logic version of the
"physical symbol system hypo.thesis" in my commentary. I'B
merely state some aspects of it.

2. The target article looks at the symbolic level from a certain
distance that does not make certain distinctions - most impor
tant being the distinction between programs and propositions
and the different varieties of proposition.

3. My challenges to connectionism concem epistemology
only - not heuristics. Thus I wiB be concerned with what the
system finally learns - not how it learns it. In particular, [wiB be
concemed with what [ call elaboration tolerance, the ability ofa
representation to be elaborated to take additional phenomena
into account.

From this point of view, the connectionist examples I have
seen suffer from what might· be call~d the unary or even
propositional fixation of 1950s pattern recognition. The basic
predicates are all unary and are even applied to a fixed object,
and a concept is a propositional function ofthese predicates. The
room classification problem solved by Rumelhart, Smolensky,
McClelland and Hinton (1986) is based on unary predicates
about rooms, e.g. whether.a room contains a stove. However,
suppose we would like the system to learn that the butler's
pantry is the room between the kitcllen ~md the dining room or
that a small.room adjoining only a bedroom and without win
dows is a closet. As far as I can see the Rumelhart et al. system is
not "elaboration tolerant" in this direction, because its inputs
are all unary predicates about single rooms. To handle the
butler's pantry, one might have to build ·an entirely different
connectionist network, with the Rumelhart et al. network hav
ing no salvage value. My epistemological concerns might be
satisfied by an explanation ofwhat the inputs and outputs would
be for a connectionist network that could identify all the rooms
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of a house, including those whose identification depends on
their relation to other rooms.

I might remark that the 19605 vision projects at Stanford and
M.I.T. were partly motivated by a desire to get away from the
unary bias of the 1950s. The slogan was "descIiption, not mere
discrimination." Indeed, one of the motivations for beginning to
do robotics was to illustrate and explore the fact that to pick up a
connecting rod a robot needs to do more than just to identify the
scene as containing a connecting rod; it requires adescription of
the rod and its location and orientation. Perhaps connectionist
models can do this; and it seems to me very likely that it can be
done subsymboJically. I hope that Smolensky will address this
question in his response to the commentaries.

A semi-heuristic question of elaboration tolerance arises in
connection with NEITALK, described by Sejnowski and Rosen
berg (1987). After considerable training, the network adjusts its
20,000 weights to translate written English into speech. One
might suppose that a human's ability to speak is similarly
represented by a large number of synaptic strengths learned
over years. However, an English-speaking human can be told
that in the roman alphabet transcIiption of Chinese adopted in
the People's Republic of China the letter Q stands for the sound
Ichl, and the letter X for the sound Ishl. He can immediately use
this met in reading aloud an English text with Chinese proper
names. Clearly this isn't accomplished by instantly adjusting
thousands of synaptic connections. It would be interesting to
know the proper connectionist treatment of how to make sys
tems like NEITALK elaboration tolerant in this way.

In defence of neurons

Chris Mortensen
Department 01 Philosophy, University of Adelaide, SA 5001, Australia

I take up Smolensky's proposition (17) with which I am in
agreement. J.J. C. Smart (1959) suggested nearly thirty years
ago that there are various conscious judgements we make about
oUnlelves which have fairly direct neural correlates. We judge a
state (a mental state) of ourselves to be waxing or waning for
example; and it is reasonable to think that some activity really is
waxing or waning. Clearly the activity being dealt with will be a
waxing and \\ aning in the relatively large-scale spatial and
temporal structure of activity patterns. Smart also claimed to
account for conscious judgements about perceptual states, such
as colour expeIiences, as awarenesses of characteristic patterns
of similarities and dissimilarities between broad structures of
neural processes, without anything further being present to
consciousness about the features ofthose structures responsible
for the similarities. The point is that the aspects of waxing and
waning are plausibly understood in termS of changes in gross
smnmation or averaging oflevels of individual neuronal activity,
admittedly of distributed patterns of activities identified to
consciousness in other ways as weD. So some aspects of "con
scious phenomenology" are fairly close to the neural level (I
"nlean the level of neural concepts, not of individual neurons).

The idea that consciousness is a relatively coarse-grained
registerofneural activity works less weB for the phenomenology
of some ofour perceptual states, however. Smolensky's subsym
bolic methodology accounts weB for undefinable judgements of
similarity or rightness which are part of the intuitions of the
experts, as it does for "the loss ofconscious phenomenology with
expertise." It is nonetheless less plausible to claim with Smart
that the contents of consciousness are mere similarities and
dissimilarities in the case of, say, colours. The phenomenology
of colours remains intractable, I would say.

Smolensky allows that visual and spatial tasks might be an area
where the subsymbolic and neural levels merge, a view which I
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&'ould argue is supported by evolutionary considerations. It is
npt such an unreasonable speculation that information about
shape and spatial relationships might be most economically
stored in ways ("soft constraints") which utilise gross topological
similarities to features present at the retina, especially:ifwe are
;Ulowing modelling by analogue computers. By "economically"
Lmean relative to fairly simple energy and interference con
straints on cellular architecture such as those displayed by the
optic nerve, which would seem in tum to requi!e the observed
neuroarchitecture of the plimary visual areas of the cortex. The
conclusion to draw here is that the conscious aspects of shape
perception may simply be relatively coarse aspects of the spatial
distribution of neural architecture, in line with Smolensky's
proposition (17) but not his proposition (6). The homunculi of
the somatosensory system suggest a similar story. Sometimes,
in other words, "look to the neurons" is not such bad advice as
Smolensky makes out.

A final point is that the interaction between neural, subsym
bolic, and symholic levels defeats any simple reductive thesis of
everything to the subsymbolic level. Public communication at
the symbolic level ensures its autonomy, for example. I empha
sise also the ubiquity of the perceptual. The partial truth in
empiricism pertains to the extent to which Our concepts are
permeated with the sensory: We cannot escape our prelinguistic
evolutionary past. Hence, ifthe neural plays agreah~r role in the
analysis of the sensory, it cannot be neglected in a proper
account of other levels, and the completeness clause of Smol
ensky's proposition (8c) is thrown into question.

Connections among connections

R. J. Nelson
Department of Philosophy, Case Western Reserve University, Cleveland,
Ohio 44106

I agree with most of what Smolensky says about the aims of a
connectionist approach; nothing I have to say is meant to be
critical of connectionist research in cognitive science. What I
understand of it is impressive indeed. However, nothing Smol
ensky says convinces me that what he calls the "traditional
cognitive model" can't in principle supply the theoretical power
a connectionist model can, and more.

A lot depends on how we understand "traditional model." For
Smolensky it is based on a symbolic paradigm: Processors
manipulate discrete symbols and follow algorithms; they oper
ate sequentially, that is, are von Neumann machines, and they
mimic conscious rule interpretation. This characterization of the
traditional model assumes that cognitive processes are modeled
by programs operating on data, which is ofcourse the common
practice in artificial intelligence circles.

Von Neumann machine programs determine sequences of
fetch-execute cycles using a single port memory. Programs are
generally written in high level languages and translated to or
executed from, machine language level, using data structures
such as lists, trees, semantic nets, and the like. Cognitive
scientists are the first to maintain that the mind is not very much
like the computer model structurally and that computer pro
cessing is not strongly equivalent to the cognitive, but perhaps
stronger than mere simulation. According to connectionists,
another shortcoming is that the model doesn't seem to be of
nlllch use in explaining highly parallel cognitive activity or
associative mnemonic processes.

TIle connectionist's is a pretty inadequate notion of contem
porary processors, or ofsequential processors themselves on the
subprogram level. Multiprocessors, which are also connec
tionist systems, geometrically speaking, can perform tasks in
parallel using simultaneously all the feedback you can imagine
and more. Beyond that, there are multiaccess memory main-

frames that have multi-ported memories (an example is the Cray
X-MP-2) and fast wired-in means of comparison which, when
combined with multi-ported memories, obviate associative
memory architectures. These are not von Neumann machines
and have not been ex·tensively used, so far as I know, in AI. In
none of the literature with which I am familiar have they been
used for simulating connectionist schemes in cognitive science.

On the subprogram or logic level, a garden variety sequential
computer is a discrete state system, i.e. a finite automation.
Finite automata operate on decoded symbols (of an assembly
system, for example) and hence its symbols are more finely
grained than those presupposed in the "traditional model."
Finite automata are parallel (ofcourse; as Smolensky says; what
counts as parallel and serial depends on the level ofdescription).
For example, a network realizing the m+n relative recursions
for the next state if) and output (g) respectively of an FA

Yt (0) = k k ~ 0, 1
y/t + I) ~ fr(x,(t),. ., x"(t).y,(t), ... , ym(t»

i = I, . , nl
zit) ~ gj(x,(t), ... , xn(t),!/,(t), ... , Ym(t))

j = 1, ... , n

is about as parallel and interactive as you can get; every state
element y is connected to and influences every other.

Restricting remarks to machine language programming, in
the processors we know about (either sequential or parallel)
there are two levels of algorithm guiding a process, the al
gorithms written in the program and the algorithm embodied in
the circuit logic. For instance, a program contains the instruc
tion ADD, and the logic level network, when obeying a com
mand, follows a built-in algorithm represented by a set of
functionals of the type displayed above. These relations can be
written as production rules, as can the machine language pro
gram. So they are both algorithmic in the same sense, while they
are manifestly different in architecture.

Thus the logic netwol'k level is subconceptual, subsymbolic,
parallel, using finely grained representations and operates intu
itively in the sense that in follOWing a program imposed at the
conceptual level it executes another at the logic network level,
but not by anything remotely similar to "conscious rule in
terpretation." [n addition, like connectionist models, logic net
works (if considered for modeling cognition) are at a level
intermediate between the symbolic conceptual level and the
hardware or neural level. This idea of embodied algorithm is
important in the application of Church's Thesis to cognitive
science (Nelson 1987a).

Whether the mind is anything like this is of course relatively
unknown. It is quite clear that net recursions, although connec
tionist for sure, are not very much like the connectionist nets of
the cognitive scientist. Nevertheless, assuming computa
tionalism is on the right track, the picture I have drawn is very
similar to the connectionist's: Cognitive activity goes forward on
a symbolic level modeled in the traditional way, and is associ
ated in some way to a fine-grained subsymbolic, parallel, etc.
process modeled hy connectionist nets. [can say a lot more than
that. A first-year computer engineering student could design a
logic net realizing a given connectionist scheme using composi
tions of finite automata, Le., ordinary discrete state methods,
with the exception that the excitatory and inhibitory connectors
among units of the network would bear associated integral
rather than real values. I am not certain what limitation this
would impose. But the automaton version has advantages (one
of them is that there is no mystery in interlevel connectivity),
and is fur from being a "simulation" in the sense that a sequential
program would be. This possibi.lity shows both that the connec
tionist type ofmodel is theoretically dispensable and is replace
able by a computationalist model that is by no means a simula
tion on a von Neuman machine. It's done by realizing the
connectionist's heuristic model at a soft, logic level. I have little
idea whether this is desirable, but it could be done.
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But more than this, I follow Pylyshyn (1984) ill suspecting that
connectionist models arc, qua explanations, of what he calls the
"functional arehitecture" type. A n~cessary condition fur cog
nitive modeling is that it appeals to the iufonnutiou-bearing
content of representations. Put more formally, representations
should be semanticaUy iuterpretable esscntially in the sense of
Dlodel theory (or better, in the sense ofsome theory ofreference
that unfortunately docs Hot exist yet); otherwise they are not fit
operands of cognitive activity but ju~t causal Jillks in the ftmc
tional architecture level. Furthermore, if Pylyshyn is right,
connectionism emlllot explain inteutional attitudes.

I am aware that thi~ view is subject to serious dispute. It is
quite possible that representations or "subsYlllbol!," are seman
tically interpretable - content bearing. However, most of the
uses of "representation" are quite ambiguous (representation of
information is not the same thing as symbolic cOlltent~bearing

information; and neither are the same as semantic net represell~
tations of "meanings"). As this is so, I am not certain that I would
understand any claim that Smolensky's subsymbols are content
bearing in the relevant sense without first being instructed in
connectionist terminology.

It call be argued, Nelsoll (1987b) against Pylyshyn (1984), that
finite automata logic circuit nets do manipulate content bearing
sYlllbols, and moreover can in principle account- for proposi
tiOllal attitudes, at least at the level of sensory expectations and
perceptual belief (Nelson 1982). I accordingly advance the
thesis that connectionist-methods, though extremely valuable as
heuristic tools, do not capture the distinctive qualities of cogni
tions and that logic nets - which are parallel, subsymbolic,
operating below a conscious control level, mId so forth - do.

A great merit of connectionist research beyond the interest
ing alld fruitful expeliments it has produced is its serving to put
the program paradigm finally in proper perspective. Pattern
recognition, for instance, is far more appropriately approached
on the connectionist (either Slllolensky's or a digital logic net
work level) than on the programming level. I suspect the same is
true of language acquisition and elsewhere. Tllis is hardly ncws;
but the work of connectionist cognitive scientists helps make it
sink in.

Subsymbols aren't much good outside of a
symbol-processing architecture

Alan Princea and Steven Pinkerb

"Department of Psychology, Brandeis University, Waltham, Mass. 02254
and bDepartment of Brain and Cognitive Sciences, Mfr, Cambridge, Mass.
02139

1. On the issues dividing connectionism and symbol systems.
Smolensky's analysis relies on a series of spurious theoretical
conflatioIls:

1.1. Symbolic = conceptual, connectionist = subconceptual. For
Smolellsky, connectionist theories repre~enta radical departure
because they invoke a subsymbolic or featurallevcJ of analysis,
which contrasts with the consciously accessible concepts, easily
labeled by words, that symbol-processing theories are commit
ted to. But in fact symbolic theories have no a priori commit
nlent to the "conceptual" level. Phonolugical distinctive fea
tures are a perfect example, and they were brought into
generative linguistics for precisely the reasons that connec
tionists now embrace subsYlllbols: to define appropriate dimen
sions of similarity and generalization Qakobson, et al. 1951;
Halle 1962). Similarly, subsymbolic features are routinely util
ized in syntax, morphology, and semantics.

This is presumably why SnlOlenslcy excludes formal grammar
from "tIle symbolic paradigtll. " This is untenable. The "subsym-
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boIs" of linguistics are handled by rules and principles of an
unlllistakalJly symbol-processing type. Frequently discussed in
the abstract as prototypical of the symbolic paradigm, linguistic
themies are implemented as parsers in a variety of symbol
processing architectures. More cOllcretely, connectionists' own
models of morphology and SYlitax (Rumelhart & McClelland
1986; McClelland & Kawamoto 1986) hear scant resemblance to
those offormal linguistics. III any case, "subconceptual» featural
analyses can also be found ill theories ofnonlinguistic cognition
(e.g., reasoning: Tversky & Kahneman 1983; vision: MatT 1982;
Ulh"an 1984).

1.2. Parallel = connectionism; serial = symbol systems. All al
goritluu is serial to the exteut that it requires an order ofsteps ill
its execution. The symbolic paradigm has no a priori commit
ment to strict seriality. Among linguistic theories, for examplc,
some are highly serialized, other~ rely entirely on sets ofcondi
tions applying simultaneously. Less obviously, connectiollism
itself supports serial processing, when units are wired into
feedforward layers, or, as in Smolensky's model, when "mac
rodecisions" or stabilizations of parts of uetworks occur in
specifle orders.

1.3. Context-sensitive :::; connectionism; context-free = symbol
systems. Smolensky's example of thc context-sensitive/context
free distinction relies on a fairy tale about the acquisitioll of the
English past tense, which we discuss below. We Hote that
coutrary to Smolensky'~ assertion, grammatical rules do not
have consequences "singly"; they take their meallillgs in the
context ofother rules, a fact at the heartoflinguistic explanation.
For example, the rules he cites- "past (go) = went·' and "past (x)
= x+ed" - have an intrin~ic fonllal relation, due to the gener
ality of the regular rule: since [go] is a possible instance of [x],
either rule is capable of applying to go. nlis relationship is
resolved by a principle that adjudicates between the gencr.11 mId
special cases (see Pinker 1984). Adding a new rule, then, can
radically change the ecology of a grammar. This is "context
dependence" of exactly the right sort, and it dispels the mystery
that SnlOlenslcy sees in the fact that adults' went supplants
children's goed.

1.4. Connectionist explanations are "exact"; symbolic explana
tions are "approximate." Smolellsky implies that stochastic
search at the microscopic level ofa network provides an "exact»
account of a cognitive process, whereas the structure of hanno
ny maxima, while a convenient sUlIlmary oftlle network's global
behavior, describes the process only approximately. Tbis con
flates two distinctions: macroscopic versus microscopic levels of
analysis, and exact versus approximate descriptions. Two de
scriptions could each be exact at different levels; it seems odd to
say, for example, that an account of brain function in terms of
neurons is only "approximate," with the "exact" account lying at
the level of atollls. Different levels of analysis are motivated 
both of them true "exactly" if true at all- whenever systematic
events at the Dlacro~level are 1I0t exhaustively predictable or
motivated by principles of interaction at the micro-level.

Tins is exactly the case in many cOllnectionist lIlodels: Far
from being self-urganizing, they are often wired by hand, and
their paratueters are tuned alld tweaked, so that they behave
properly (that is, they assume the global harmony maxima the
theorist desires). This is not motivated by any cOllllectionist
principles; at the level at which the manipulations are efiected,
units and connections are indistinguishable and could be wired
together any way one pleased. The question "Why is the
network wired that way?" is answered by the macro-theory 
"because phonological processes apply to adjacent segments";
"because the verb determines the role assigned to its object,"
and so forth. These answers are not "approxinmte." A successful
symbolic theory may dictate the representations, operations,
and arclntecture so robustly that any lower-level analysis that
diverges from it - fails to "implement" it - will be a flawed
approxilnation.



Comm.entary/Smolensky: Proper treatment of connectionism

•The adequacy of connectionist architectures. TIle argument
~t.begins in a rejection of symbols for commonsense concepts

~djumps to a defense of connectionism has a hole at its center:
Without symbol-processing machinery, subsymbols don't do
much good. Connectionist models that are restricted to associa~

tions among subsymbols are demonstrably inadequate. Consid
erthese problems (For details, see Pinker & Prince 1988):

2.1. Distinguishing structural relations and similan"ty relations. In
iXrnbol .'iystems, a featural decomposition i!i just one of the
r~cords associated with an entity: The feature vector can be
~electivcly ignored by some processes, and the entity is repre
sented by its own symbol, giving it an existence independent of
the vector. In contrast, for a prototypical network using "dis
tributed" representations, the entity is nothing but its features ..
If~r example, in the Rumelhart & McClelland (1986) model of
past tense acquisition, a word is represented as a pattern of
phonological features. This leads to an immediate problem:
representing linear order. Since the vector must represent both
the word's phonetic features and how they are concatenated,
each feature must encode both kinds of infoIDmtion simul
taneously. Thus such "Wickelfeatures" encode the presence of
three adjacent phonological features; for example, "unvoiced
unvoiced-voiced" is one of the Wickelfeatures activated for stay.

Smolensky cites the Wickelfeature as a clear case of a "sub~

symbol." But note the bait-and-switch: Subsymbols were origi~

nally introduced as entitie!i that are more abstract or fine
grained than symbols corresponding to commonsenSe concepts.
But now they consist of features of an entity conflated with
features of its context, combined into a single unit. This is
necessary because the semantics of the features must do the
work ordinarily carried out by symbol-processing architecture,
in this case, preservingconcatenative structure. The problem is
that this move has disastrous empirical effects. Some words (e.g.
albal, albalbal in the Australian language Oykangand) can't be
represented uniquely because they contain several instances of
a Wickelfeature, and the model can't count Wickelfeatures; it
can only tum them on. It is difficult to explain psychological
similarity: Wickelfeaturally, slit and silt have as much in com
mon as bird and clam. The model can learn bizarre, nonexistent
morphological rules (e.g., reverse the order of the phonemes of
the stem) as easily as common rules (e.g., do nothing to the
stem; add d to the stem). Some rules (e.g., reduplicate the last
syllable) can't be learned at all.

This illustrates a dilemma inherent in Smolensky's program:
Connectionists need to invoke subsymbolic features to get
empirical Successes, but their impoverished associationist
mechanisms force them to use not the features demanded by the
nature of the desired generalization, as revealed by macro~

theory, but features that simultaneously carry burdens usually
assigned to the symbol-processing architecture, such as pre
serving order. The subsymbols must do several jobs at once,
none successfully.

2.2. Keeping individuals from blending. With feature-only repre
sentations, representing two things simultaneously is prob
lematic. Ifearly visual input is an activation pattern over feature
maps, then without a serial attentional mechanism you can't tell
the difference between agreen circle near a red square and a red
circle near a green square. In the Rumelhart & McClelland
model, various subregularities and the regular rule all compete
to activate Wickelfeatures for the past fonn: When sing is input,
you could get features for sing, sang, sung, singed, sanged, etc.,
all superimposed. The model isn't putting out any single word at
all, just an unordered collection of features, many of them
contradictory. Thus it couldn't avoid blending what should be
distinct competing outputs into bizarre hybrids such as toureder
as the past of tour, or 11Icmbled for 11Ulil.

It is easy to conceive of hypothetical languages in which
speakers compose words by probabilistically superimposing bits
of material into anyone of a family of related combinations,

depending on the frequencies ofcompeting.generalizations they
have been exposed to. It is significant that human languages
don't work that way. Connectionist networks, which superim
pose the features of distinct individuals onto a single vector,
leave this a mystery.

2.3. Distinguishing types and tokens. If objects arc represented
only in tenns of their subsymbolic features, two objects with the
same features get the same representation, and thus anything

. associated to one gets associated to the other. Forthe Rumelhart
& McClelland model this raises many problems: ring and wring,
for example, ought to go to rang and wrung, but the model can't
enforce this difference because the past fonn is directly associ
ated with the phonological representation of the stem. In tradi
tional theories, past fOnDS are associated with symbols repre

. senting the word itself, eliminating the problem. (Incidentally,
adding semantic features won't help here.) Again, connectionist
representations face conflicting demands, in this case, fostering
generalization and keeping individuals distinct.

2.4. Selectively ignoring similarity. Similarities among indi~

viduals captured in their feature overlap must Sometimes be
shelved. For the past tense, phonological similarity plays a role
in predicting forms within the system of irregular verb roots (cf.
stinglstung, cling/clung, stick/stuck), but when verbs are de
rived from nouns (which clearly cannot be marked as having
"irregular past tense"), phonological" similarity goes out the
window: You get He high-sucked Lafleur, not high-stuck. What
is needed is some all-or-none mechanism that accesses featural
information in smpe cases and ignores it in others. Nonlinguistic
concepts can impose the same requirements.

2.5. Knowledge above and beyond trained associations. If the
only available machinery is a set of unit!i and connections, then
the obvious way to learn is to connect more strongly those units
that frequently co~occurin the input. Virtually all connectionist
models learn according to this associationist doctrine. Smol
ensley reproduces Rumelhart & McClelland's version concern
ing the onset of overregularization in children: that it must be
because the environment changes from a mixture of verbs in
which irregulars predominate to a mixture in which regulars
predominate. However, this is false: The ratio does not change.
According to traditional symbolic explanations, the change oc
curs because the child memorizes past forms in the first stage
and coins a rule capable of generating them in the second. All
the data are consistent with this explanation. Thus we must
reject Smolensley's argument that overregularization shows that
cognition is nonmonotonic, radically context-sensitive, - etc.

Attributing any of these phenomena to a separate rule~pro~

cessor that is fed explicitculturally transmitted conventions is an
illegitimate escape hatch. Not even the most fanatical yuppies
will find a school that will instruct their child in the principles
necessary to prevent him from saying high-stuck; nor do they
have to. In fact, since the intelligence of connectionist models
relies on specific input histories, whereas that of symbolic
models relies on unconscious principles wildly unlike anything
formulated in language curricula, explicit instruction will make
people behave more like connectionist networks.

In sum: Smolensley conflates logically distinct contrasts in a
way that stacks the deck in favor of connectionism. His defense
of connectionism is the claim that good cognitive models will
decompose commonsense concepts into more fine-grained,
subtle, or abstract features or "subsymbols." But this claim is
orthogonal to the connectionism debate. Prototypical symbolic
theories, such as grammars, have always incorporated "subsym
bois"; prototypical connectionist models, because they choose
an associationist architecture, require their subsymbols to ac
complish a set of mutually contradictory tasks and hence suffer
as cognitive theories.
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A two-dimensional array of models of
cognitive function

Gardner C. Quarton
Mental Health Research Institute, University of Michigan, Ann Arbor, Mich.
48109

Imagine a large two-dimensional array ofmodels (simulations) of
cognitive processes. A family ofclosely related models is stored
in a single column. At level one there is a simple model that
takes as input some set of messages that represent some subset
of plausible inputs to a human being engaged in a cognitive
function and produces as output a set of messages that could,
plausibly, represent the resulting output of the cognitive pro
cess. If this model is treated as a black box, we do not care, at
level one, what computations go on inside as long as the output
is detennined in pmi by the input, and the "external behavior"
of the black box bears some resemblance to human function.

At level two, within the same column, and, therefore, within
the same family of models, we have an elaboration of the model
at level one. Some of the details of events within the level-one
black box are simulated as new black boxes nested within the
level-one black box. This model specifies to a limited degree
how the behavior of the model at level one is implemented. To
make the model work at level two, we shall have to develop
mechanisms for computing the ouqmt of the level-two black
boxes from their input, but we do not treat this implementation
as part of the model that mimics the humml cognition. Note that
we can implement the external behavior of a black box in two
ways. One, which can be called "simulation relevant," requires
the specification of a new layer of black boxes organized in a
fashion that is part of the simulation. In other words, ifwe were
checking the veridicality of the model, we would expect the
external behavior of both the level-one and the external behav
ior of the level-two black boxes to mimic the cognitive process
we are simulating. The second mode ofimplementation, which
we shall call "simulation irrelevant," makes the external behav
ior of the black box be what we wish it to be, but it can do this in
ways that we know are not likely to be similar to the way in which
such behavior is implemented in the human function being
modeled. In many models of cognitive function using Von
Neumann computers, the actual computations within the lowest
level of black boxes may be of the simulation irrelevant sort. Of
course, in some sense this implementation is not irrelevant
because it makes the model work. However, it is irrelevant in
the sense that we wake no claim that this implementation
mimics the comparable implementation in what we are
modeling.

Now assume that the boxes in this column arefiHed in down to
level one hundred. Each model except the level-one model is a
further elaboration of the modffl above it, created by specifying
nested black boxes, organized in a specified pattern, behaving in
a specified way, and playing an implementation-relevant role.
The black boxes in the innermost nest ofleve1 one hundred still,
of course, are implemented in an implementation irrelevant
fashion. Let us assume, however, that the level one hundred
model is a simulation ofa complete nervous system, and that the
innermost black boxes represent molecules in membranes of
neurons, and other entities at that level ofbiological detail. We
have described just one column of the array. The other columns
represent different simulating strategies. For instance, it may
be that the first twenty columns represent modeling strategies
based on the traditional symbolic paradigm. They are all differ
ent, but they share this feature. The next twenty are all connec
tionist. Still more columns may represent simulation strategies
we have not thought ofyet. It tums out, however, that many of
the columns representing the symbolic paradigm behave plausi
bly at the upper levels, but as we move down the column it
becomes increasingly difficult to pretend that the implementa
tions resemble those in the human being. The human being
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after all does not nm LISP progranls. As a result, the cells of the
columns below the uppemlOst levels are blank. This will also be
true for the columns representing connectionist strategies, but
it is possible that the models are plausible a number of levels
below those of the symbolic paradigm.

Smolensky argues that "most of the foundational issues sur
rounding the connectionist approach turn, in one way or an
other, on the level ofanalysis adopted." He ends up suggesting
that there are three levels of analysis, the symbolic paradigm at
the top, the subsymbolic paradigm in the middle, and the neural
level at the bottom. He defends his choice of three levels rather
than two because he does not wish to suggest that connectionist
modeling operates at the neural level.

I believe his three-level approach confounds the two ways of
comparing models which are represented in my imaginary array
by the two dimensions. Models differ in the strategy realized by
their choice of implementing computation. They also differ in
the degree of detail achieved by the simulation-relevant imple
mentation and the degree to which this simulation-relevant
implementation is supposed to resemble the function of the
human nervous system.

Many neuroscientists would agree that connectionist models
like those developed by Smolensky do involve more levels of
simulation-relevant detail than do those in the symbolic para
digm. They may also agree that connectionist models seem to
simulate not only the messages involved in the cognitive func
tion but also the message vehicles, that is, the connections and
the connection strengths that change dynamically over time.
However, most of them would say that we are still a very long
way from a veridical simulation ofa human nervous system, and
it is not clear whether this strategy is the beginning of a path to
such a simulation or a blind alley.

We need detailed review papers that compare different mod
eling strategies (columns) at all the achieved levels of implemen
tation (rows). We need such reviews for many different types of
cognitive function (a third dimension?). Smolensky deserves a
great deal ofcredit for realizing that a programmatic description
of his strategy - independent of his actual models, but using
them as illustrations - would permit an intensive review of
many of the problems he faces. The other commentaries in
cluded here should help identify those issues needing more
examination. Taxonomies of parallel processing computer al
gorithms and a mapping of these on computer architectures
share some features with taxonomies of connectionist models.
The members of these categories seem to adopt idealizing
simplifications that make them too simple to be useful simula
tions of nervous system distributed infonnatiml processing,
parallelism, and concurrent computation. A much more de
tailed exploration ofparallel processing (concurrent) algorithms,
parallel processing computers, and connectionist models may
be needed before neurophysiologists can develop the necessary
new hypotheses.

Sanity surrounded by madness
Georges Rey
Department of Philosophy, University of Maryland, Col/ege Park, Md.
20742

Smolensky's account of connectionism is a mixture of positive
and negative proposals. The positive ones (e.g., 8a and 8b) are
generalizations of interesting results regarding specific cog
nitive processes; the negative ones (e.g., 8c) involve the rejec
tion of certain claims of "symbolic" approaches. l Smolensky is
careful (in claims (la-e)) to admit the limitations of present
connectionist results and to avoid dismissing the symbolic ap
proaches out of hand. However, he also wants to avoid the
"genuine defeat" of regarding connectionist models as "mere
implementations" of symbolic ones. I want to locate here just
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where - between eliminating symbolic approaches fur connec
tionist ones, and reducing the one to the other - Srnolensky's
9'Wfi position lies.

ymbolic approaches are attractive for a wide variety of
a,sons, chief among them their capacity to deal with the
lowing phenomena:
(i) The structure of attitudes. There is a difference between

~hiIlking that someone loves everyone and that everyone is
loved by someone or other; symbolic approaches capture this
kind ofdifference by relating the agent to systematically differ
ent symbolic structures.

(2) The fine-grainedness of attitudes. There is a difference
between thinking that Mark is fiLt, Sam is fat, that man is fat, and
tl:m funniest American writer is filt, even where Mark = Sam =.
that man = the funniest American writer. There is even a
difference between thinking that a square lies in acirde and that
a square lies in a locus of coplanar points equidistant from a
itven point. Symbolic approaches permit distinguishing these
attitudes by distinguishing syntactically between different,
even cointentional symbolic structures to which an agent can be
related.

(3) The causal efficacy of attitudes. Ordinarily, someone
thinking that someone loves everyone disposes the thinker also
to think that everyone is loved by someone, but not vice versa;
and ordinarily thinking that Mark is fat, and iffat then bald, can
lead someone to think that Mark (but again not Sam, unless one
thinks that Mark = Sam) is bald. Almost as ordinarily, people
are biased toward positive instances in confirming hypotheses,
ignore background frequencies in assessing probabilities, and
are prone to fulling into gambler fallacies. All these different
patterns of thought cause people to behave in systematically
different ways. If one supposes that the palis of structures
needed in (1) and (2) are causally efficacious, symbolic ap
proaches can capture both these rational and irrational patterns
of thought.

(4) The multiple roles of attitudes. People often wish for the
very thing that they believe does not pres~ntly obtain, for
example, a drink of water, or that Sam (but not Mark) might
come to runner. Symbolic approaches capture thi.s phenomenon
by permitting different roles and access relations to the same
symbolic structures.

Against an these reasons for symbolic approaches, there are
the well-lmown problems that Smolensky eites regarding how
"brittle" and "impractical" they are: their failure to capture the
extraordinary swiftness of perception and thought, their failure
to penorm "gracefully" in degraded circumstances. Connec
tionist models do appear in these respects to be better. But, of
course, their advantages in these respects will amount to little if
they enjoy them at the expense of (1)-(4) ahove.

To some extent, Smolensky anticipates this issue. What
advantages there are to symbolic models can be captured by
regarding them as special cases of connectionist models: Sym
bolic structures are, for example, to be identified with "patterns
of activation" in connectionist systems. These special cases,
however, are "crudc" ones: Connectionism ought in the end to
replace approximate symbolic approaches, just as quantum
mechanics ought in the end to replace classical physics.

Now, it is not at all clear to me how these patterns ofactivation
will in fact he ahle tn dn all the work demanded hy (1)-(4). Are
the patterns structurally decomposable (e.g., into operators,
quantifiers, connectives, terms) in the ways required by (I)?
Can they be distinguished finely enough to capture the distinc
tions demanded by (2)? Are they and their parts available for the
multitude of different relations and interactions required by (3)
and (4)? It is possible that Smolensky has positive answers to
these questions; or perhaps he has other ways ofcapturing these
phenomena, or an argument that they are spurious. But he
needs to present a great deal more discussion to make any of
these possibilities - to say nothing of the bold claims of (If-k) 
even remotely plausible.

Suppose, however, that patterns ofactivation can be shown to
play the role of symbolic structures. Why think that the latter
structures are only crude approximations, that nonconscious
processing is not tractable at the symbolic level, but "only" at
the subsymbolic one? Smolensky's pessimism in this regard is
no doubt based in part on the aforementioned problems of
symbolic models in AI. But, notoriously, AI has been largely
concerned with emulating human behavior. Someone might
suggest we look instead for laws of a system's competencies.
Why shouldn't we expect there to be symbolic laws capturing
the competencies underlying, for example, (1) and (3)?

Smolensky worri~s about this issue as well. He acknowledges
the competence/performance distinction, but reverses the usu
al understanding of it: Where the symbolic approach presumes
that the laws will characterize competencies, penormance
being explained as the result of interactions, Smolensky expects
the laws to lie with performance, competencies being explained
as special cases. But this reversal alone can't be a prohlem, since
a special case may still be a perfectly exact one. Where this
difference in perspective makes a theoretical difference is in the
way the speciality arises: The' symbolic approach presumes
competence laws will Concern the internal states of the system,
whereas Smolensky claims that competence laws will emerge
only out of specific environmental conditions. The internal
system by itselfhas no sharp concephml order: From a concep
tual point of view it is a hodgepodge ofassociations governed by
nonsymbolic "thermodynamic" laws. Competencies are "har
mony maxima" arising out of a general network of chaos: "If in
the midst oflife we are in death, so in sanity are we surrounded
by madness," observed Wittgenstein (1956) in the midst of
remarks on mathematics. 2

This is an ingenious and to my mind improbable claim, added
to the general connectionist approach. To make it plausible,
Smolensky needs to show not only that connectionism can
accommodate (1)~(4),but also that it will do so in essentially the
same way that his system learned Ohm's Law, without internal
symbolic laws emerging. I don't see how the example gener
alizes, however. People's ability to handle both valid and invalid
inferences of the sort noted in (3) seems to be quite general and
nongraduated: Once you see the forms you can apply them to an
indefinite variety of cases; they do not seem to be stimulus
driven in the way that Smolensky's view requires them to be.
But neither do I see that symbolic approaches are really in the
end tied to one view of competence over the .other, nOr that
connectionism ought to be so tied. Connectionist networks
might still be interesting even if the more classical picture of
competence and perfomlance survived: Performance might
often be the result ofa network, for which a symbolic system is a
fall-hack.

In any case, why think that being an implementation of a
symbolic system would be a "defeat" for the connectionist?
Should it him out that there are symbolic laws, but that sYIn
bolic structures can be encoded gracefully only as patterns of
activation, this would be of consideI<lble significance for both a
connectionist and a symbolic approach. It might provide the
requisite account of the speed with which symbolic structures
are accessed, and of the role of stereotypes and "family re
semblances" in much ordinary inference.3 Each approach could
then benefit from the strengths of the other. One needn't, after
all, be "the only president you've got" to pique the interest of
investigators. 4

NOTES
1. I acquiesce here only for the sake of argument in Smolensky's

presumption that connectionist networks are in some Important way
"nonsymbolic." The case has yetta be made that, in the ultimate (as yet
unprovided) explanation of why the networks succeed, nodes in the
network should not be taken to refer to various features of, for example,
the stimulus. Smolensky's claim that they do not refer to features of
which we are ordinarily conscious Is quite beside the point; no symbolic
story need make aIJ.Y such commitment. Pemaps the point for the time
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being is this: The computational atoms in aconnedionist network do not
seem to be the syntactic atoms over which a compositional syntax and
semantics are standardly defined. However, particularly in view of the
possibility that "patterns of activation" could correspond to standard
symbolic structures, even this weaker claim needs to be demonstrated.

2. Smolensky in this way adds a new perspective to an old debate,
siding here not only with the lateras against the early Wittgenstein (with
regard to which see also Kripke 1980). but with RUllle against Kant,
Skinner against Chomsky, and, mostrccently, Burg;e (1986) and Ban-vise
(1986) again" Fodo' (1986; 1987).

3. Which is not to say that the latter tricks exhaust ordinary in
ference. That many of OUl' ordinary concepts, fur example, exceed the
stereotypes and resemblances that we may exploit in accessing them
seems to be a further, rule-governed phenomenon that is not obviously
amenable to a connectionist approach; for further discussion see Rey
1983; 1985.

4. I'm indebted to David israel, Georg Schwarz, and PaulSmolensky
himself for sttmulatiug discussions of aspects of this topic.

Making the connections

Jay G. Rueckl
Department of Psychology, Harvard University, Cambridge, Mass. 02138

Among the JIIallY fundamental issues considered by Smolensky
are the relationships between connectiouist models and models
at the symbolic and lIeurailevels. Although I am generally in
agreement with Smolensky, I would like to comment on each of
these relationships.

The symbolic level. A crucial issue here is whether connec
tionist models should be seen as competing with symbolic
models, or if instead connectionist model.'i are merely imple
mentations of symbolic models at a lower level of description.
Smolensky explicitly rejects the implementatiollal view (hy
pothesis 10, sect. 2.4.), and examines in some detail the points of
incompatibility between .the two frameworks (sections 2 and 5-
9). Smolensky's arguments are compelling. Nonetheless, one
migllt suppose that even though these frameworks are presently
incompatible, they might eventually be made compatible
through a process of coevolution. That is, developments at one
level might bring about changes in the lormulation ofmodels at
the other level, so th~t ill the long run conllectionist and symbol
level models might be seen as isomorphic. For example, some of
the attractive emergent properties of connectiollist systems,
such as content-addressable meOlory and increilielitalleaming,
might be taken as primitives ill symbolic level models that are
assumed to be implemented on connectionist architectures
(Hinton, McClelland & Rumelhart 1986; Oden 1987).

This would be a happy outcome, but there are reasons to
doubt that it will occur, and I would like to supplement Smol
ensky's arguments by pointil}g out one problem that seems
particularly difficult to overcome. The problem (touched 011 by
Smolellsky) concerns the discrete character of computation at
the symbolic level. For example, in the typical symbolic model
instances get assigned to categories in an all-or~none fashion.
Simil.arly, production rules and other sorts of computational
processes are executed when discrete conditions are met, and
have discrete results. Recent work has showlI that symbolic
models can be "fuzzified" to some extent. Category mem
bership can be made a matter of degree, and logical operators
that retain fuzzy information can be defined (Oden 1977).
Similarly, production systems can take into account the degree
to which the conditions of a production are satisfied, and tlle
strength of the action taken can depend on the degree to which
tlle rule's conditions were met (Anderson 1983).

One might imagine a way of identifYing fuzzy symbols with
distributed patterns of activity, thus bridging the gap betweell
the symbolic and subsymbolic levels of description. For exam~
pie, one might equate the degree to which the conditions of a
production are satisfied with the degree to which a certain
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pattern ofactivity is prescnt. The problem with this approach is
tliat mowing the degree to which a pattern is present is not
sufficient for predicting the behavior of the system. One must
also know which parts ofthe pattern arc or aren't present. If: in a
connectionist model, a given pattern of activity in module A
causes a related pattern of activity in module B, there is no
guarantee that all module A patterns that overlap with the key
pattern to the same degree will result in the same module B
pattem. Under certain mapping functiolls the various B pat
terns could be wildly different. The point is that patterns of
activity at the subsymbolic level are representations with
causally efficacious internal structures. Symbol level descrip
tions, fuzzy or not, lose that intel'Oal stnlCture, and thus seem
destined to fail to distinguish between certain causally distinct
states.

The neural level. Smolensky compares neUl'al and connec
tionist architectures along a variety of dimensions (Table 1 in
target article), and the lesson he draws from this comparison is
that the subsymbolic and neural levels are conceptually distinct.
Thus, Smolensky argucs, the subsymbolic level has a .'iort of
autonomous existence. The implication is that although it would
be nice to make connections between the subsymbolic and
neural levels, there is plenty ofwork to be done at the subsym
bol.ic level alone, and this work should not be subject to argu
ments conceming neural implausibility.

Although I agree with Smolensky's arguments in principle, I
think it is a mistake to emphasize the autonomy oftlle subsym
bolic level while at the same time downplaying the potential for
making deep contacts between theories at the subsymbollc and
neural levels. A variety of considerations suggest that the at
tempt to make connections between these levels should be
given high priority. First ofaB, those ofus who have bought into
tbe computational theory of mind are committed to the assump
tion that a bridge between the computational and neural levels
of description exists, and we must thus expect that sooner or
later all understanding of the connection between these levels
will be a part of psychological theory. Second, discovering
which computational algorithms are used by humans and other
animals is hard work, and it would be foolish to ignore any
information that might inspire the development ofnew kinds of
algorithms or help to choose between altematives under consid
eration. Work at the neural level ha'i produced a wealth of such
infoIDlation, and tllose of us worwig at the conlputationallevel
would do well to take it into account. (Indeed, see Kosslyn 1987,
for all excellent example of a computational theory motivated in
part by neuropsychological and neuroanatomical findings.)
Third, developing connections between neural and computa
tional models is likely to benefit neuroscientists as well as
psychologists. As Smolellsky points out, one reason that findings
at the neural level have b:td relatively little impact on cognitive
modeling is that, although we have a great deal ofdata about the
brain, "these data are generally of the wrong kind for cognitive
modeling" (sect. 4, para. 13). Although this is surely true to
some extent, part of the problem is that computational models
have typically ignored questions of neural instantiation, and
tlms have failed to generate empirical questions for neuroscien w

tists to explore. By COllStruCtillg theories that explicitly suggest
.how algorithms might be instantiated, theorists at the computa
tional level might generate empirical predictions for lIeuro~

scientists to test. The results of these te.'its would ill tum
influence work at the computational level. This interplay be
tween the two levels could only be of benefit to us all.

Conclusion. Smolensky's analysis oftbe relationship between
connectionist models and models at the symbolic and neural
levels seems on target. Smolensky suggests that the relatiollship
between connectionist and symbolic models is similar to that
between quantulll and classical mechanics. Symbolic models
and classical mechanics offer approximate descriptiolls of their
respective domaills, but fail in ways that can be understood
within the connectiollist and quantum frameworks, respec-
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Furthermore, the differences between the two liccounts
domain are fundamental, and in neither case can one
be reduced to the other. I concur with Smolensky's

~S:~b,~~.~ and have offered one more reason to believe that
~~ models cannot he reduced to subsymbolic models.

also concur with Smolensky's analysis of the relationship
between the subsymbolic and neural levels. However, in this
regard we have different visions ofhow cognitive science should
proceed. Although he agrees that in the long run subsymbolic
and neural models should be connected in a principled way,
Smolensky stresses the autonomy of the subsymbolic level, and
does not push for an increase in the interplay between research
at the neural and computational levels. While I agree that work
at the subsymbolic level will be fruitful regardless of the degrcc'
ofcontact with the neural level, I also suggest that attempts to
makc contact between the levels will be well worth the effort.

Structure and controlling subsymbolic
processing

Walter Schneider
Learning R&D Center, University of Pittsburgh, Pittsburgh, Pa. 15260

The proper evolution of connectionism should relate multiple
levels ofdescription ofcognition to cOnstraints and mechanisms
that affect each level of description. At present most connec
tionist processing involves associations between a set of input
patterns and a set of output patterns. It has made important
contributions: showing the interrelationships among patterns
(e. g., Rumelhart, Smolensky, McClelland & Hinton 1986);
developing more powemll learning rules (e.g., Rumelhart,
Hinton & Williams 1986); and exploring the use of weights in
representational and memory systems (e.g., Hinton & Plaut
1987); see also Schneider & Detweiler 1987. In general it has
done so with an extremely limited space of connectionist archi
tectures and processes. There have been exceptions (e.g.,
Touretzky 1986; Schneider & Detweiler 1987; and Smolensky
1987). However, most connectionist models are similar to NET

talk (Sejnowski & Rosenberg 1986) in that there is an input
layer, an output layer, and zero to two intennediate layers. The
units are simple, quasilinear components summing the inputs
with a possible threshold or logistic output function. This is a
very simple architecture compared to the brain. Although these
simple multilayered systems are useful model paradigms, an
exploration of a richer set of architectures is called for.

Most connectionist modeling does not make contact with the
structural or dynamic constraints of physiology. Smolensky
remarks that neurophysiology provides the "wrong kind" of
information for connectionism - providing structure rather than
dynamic behavior. We do know a fair amount about the struc
ture of the brain (e.g., see Van Essen 1985) and this infonnation
can be used to identifY connection patterns for complex com
putation (e.g., Ballard 1986; Schneider & Mumme 1987). We
also have information about the dynamICS of the system (e.g.,
that minimal neural activation times are in the range of 5 to 50
milliseconds; and attention can modify a signal by a factor of 3,
but requires 60 milliseconds to occur [Moran & Desimone
1986J). Connectionism needs to examine a richer class of con
nective structures and modulatory processes. This richer class
raises questions such as: What is the effect of heterarchical
connectivity (as in Van Essen 1985)? How do multispeed learn
ing rates (Mishkin, et al. 1984; Hinton & Plaut 1987; Schneider
& Detweiler 1987) influence working memory? And what com w

putational advantage is there in using an attentional control
structure (Schneider & Mumme 1987)?

A richer set ofarchitectures may show that symbol processing
is more than an emergent property of connectionist vector
processing. Smolensky(sect. 2.4., I10]) faults symbol processing

when it suggests that connectionist processing is a low~level

implementation of symbol processing. Smolensky claims that
symbol processing is an emergent property of connectionist
processing. This claim seems premature. Some properties, such
as categorization of ~)'mbol~likeentities (e.g., J. A. Anderson &
Mozer 1981) are clearly emergent. Some properties, such as
variable binding, require a whole control architecture of pro
cessing components (e.g., gating cells, binding cells) to main
tain, compare, and copy activation patterns (e.g., Schneider &
Detweiler 1987; Smolensky 1987; Touretzky 1986). These are
not emergent properties; rather, they are hand crafted to per
fonn population-based processing activities that prodlice sym~

bolic-like processing. It is likely that as connectionist modeling
expands from the limited associative mapping paradigm, a
plethora ofconnectionist modules will be needed to accomplish
extensive symbolic proeessing. Both connectionist and symbolic
processing can make important contrihutions to an understand
ing of these behaviors. Rather than claiming that one level is the
emergent or implementation version of the other, it would be
better to identify the weaknes,ses and strengths of each and
examine hybrid architectures that can better cover the space of
hu man behavior.

Smolensky suggests that symbol (S-knowledge) and pattern
(P-knowledgt~)exi')t in one connectionist medium. This is possi
ble, but it may be that they are quite different processes,
implemented very differently in the architecture. Symbolic
learhing often OCClirs in a single trial (see J. R. Anderson 1983).
In contrast, connectionist leaming typically occurs in the time
scale of thousands and sometimes millions of trials (see simula
tions in Rumelhart, McClelland & the PDP Research Group
1986). Human behavior exhibits qualitatively different types of
behavior (see Shiffrin & Schneider 1977) when these two types
of lmowledge are being used. Single-trial learning typically
results in slow, serial, effortful processing, whereas extended
consistent practice produces relatively fast, parallel, low-effort
processing. If the single-trial learning is done via specialized
bind-cell processing (e.g., Touretzky 1986) one is no longer in
the same medium. The bind cells can be built out of connec
tionist hardware or Turing machines. They operate on a meta
level above the connectionist vector processing hardware. In a
model of human attentional processing (Schneider & Mumme,
forthcoming), connectionist populations perfonn categorization
and association operations. This allows the execution of P
knowledge; however, it takes hundreds of trials to develop
reliable associative patterns. On top of an architectnre of con
nectionist modules, a control mechanism is not emergent from
the associative input/output processing, but rather from a new
processing element to moderate the interactions that OCcur
when multiple messages need to be multiplexed serially to limit
crosstalk. The control level can itselfbe implemented in connec
tionist hardware. Since control processing operates at the meta
level, its activation modulates populations at the lower leveL
This provides a symholic-like control structure modulating the
vector b:ansmissions. This control process can acquire rules in a
single trial by maintaining the condition-action pairs in vector
modules. Input vectors can be compared; if there is a match, the
action vector is transmitted. As training progresses (over hun
dreds of trials), the input vector becomes associated to the
output vector, allowing direct input to output association with
out the use of the control processing.

Connectionism is a major advance in the modeling of cogni
tion and has already had a Significant impact on psychology (see
Schneider & Detweiler 1987). However, it must become a
member of a team of concepts and tools for the study of
cognition, rather than trying to produce a paradigm shift sup
planting its predecessors. A wide range of architectures should
be explored in trying to cover a space ofhuman behaviors while
using available physiological, behavioral, and computational
Constraints. Neurophysiologists tell a story that if you can think
ofHve ways that the brain can do something, it does it in all five,
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plus five you haven't thought ofyet. In the study ofcognition we
need to control our desire to have one answer, or one view, and
work with multiple views,

How fully should connectionism be
activated? Two sources of excitation and
one of inhibition

Roger N. Shepard
Department of Psychology, Stanford University, Stanford, Catif, 94305-2130

Smolensky develops a persuasive case that connectionism pro
vides a significant level of descIiption between the level of
conceptual processes accessible to introspection and verbal
communication, and the level of neural processes probed by
physiologists. Advocates of the symbol manipulation approach
to cognition (as well as advocates of the ecological approach to
perception) may facetiously suggest that connectionism is there
by "filling a much needed gap" in the explanatory hierarchy.
But, for Ine, connectionism has two exciting features that have
been lacking in the discrete, symbolic, propositional theories
that have dominated cognitive science.

The two sources of excitation. First, connectionism offers a
dense, massively parallel processing medium that in addition to
facilitating ties to the neuronal substrate appears more suited to
subserving such analog processes as apparent motion and imag
ined transfornmtion (Cooper 1976; Shepard & Cooper 1982;
Shepard & Metzler 1971).

Second, connectionism promises to furnish, for what has been
a largely ad hoc approach to cognitive modeling akin to that of
engineering, a more deeply principled ground akin to that of
physics. Instead of simulating hunmn capabilities by larger and
larger patchworks ofheterogeneous, domain-specific heuristics,
connectionism seeks a unilimn framework within which diverse
performanc"es and cOinpetences arise from a small set ofgeneral
principles. I am thus heartened in my own quest for a kind of
Newtonian meclmnics of mind that may be governed by "uni
versa!" psychological laws (Shepard 1984. 1987).

However, the general principles so far put forward by connec
tionists concern only the first two of the following three pro
cesses needed to achieve adaptive behavior.

Three processes of adaptation. Inference: On the shortest
time scale, upon encountering a particular situation, there is the
process of adapting the internal representation and overt re
sponse to the requirements of that situation - even though no
situation is ever completely revealed in the available sensory
input. In a connectionist system, perceptual completion, in
terpretation, categorization, prediction, and inference are
achieved by the passage, through state space, of the vector
specifYing the momentary levels of activation of all elements in
the processing network to a stationary vector (or "eigenstate"),
in accordance with what Smolensky tenns the "activation evolu
tion equation" (sect. 2.3., para. 5) (formalizing, perhaps, relaxa
tiOll methods for the satisfaction of "soft constraints"). The.set of
situations giving rise to the same stationary vector correspond,
in "psychological space," to what I nave recently ternled a
"consequential region" (Shepard 1987).

Learning: On an intermediate time scale, over a series of
encounters with situations from some ensemble, adaptation to
the ensemble is achieved through principles governing the
slower passage, through weight space, ofa vector specifying the
strengths of all connections between the elements in the pro
cessing network, in accordance with what Smolensky calls the
"connection evolution equation," fonnalizing, perlmps, "back-
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wards error propagation" (sect. 2.3., 7; fuotnote 7). Through
such "tuning," an initially chosen vector of weights comes to
detemline increasingly refined trajectories and final states for
tlle vector of activations and, hence, increasingly effective
inference.

Selection of initial structure: On the longest time scale, tlle
topology and initial weights of a connectionist network are the
result ofsome evolutionary process that generates systems with
different connectivities and weights and eliminates those sys
tems that fail to learn to draw inferences appropriate to a
particular ensemble of situations, For Jiving systems, this pro
cess is that of Inutation and natural selection. For artificial
systems, it has been a more haphazard and idiosyncratic one of
guess and test. In either case, the imposed connectivity and
initial weights determine what inferences are learnable and
what sequences of situations are sufficient for such learning.

A source of inhibition. Smolensky rightly observes (sect. 1.1,
para. 3) that "much of the allure of the connectionist approach"
is that through tunhlg of their own weights, connectionist
networks "program themselves." But nontrivial self-program
ming can take place only ifsome kllowJedgc about the world in
which the system is to learn is already built in, Any system that is
without structure has no basis for generalization to new situa
tions (Shepard 1984; 1981; 1987).

Smolensky also rigldly emphasizes (sect. 7.1) that the purpose
of the "subsymLolic" system must be to achieve a "veridical
representation of '" environmental states, with respect to ...
given goal conditions" (para. 1). However, in fucusing on the
achievement ofsuch representations through the two processes
of inference and learning, he (like other connectionists) seems to
slight what I regard as the most challenging problem ofcognitive
science, namely, the problem of the source and internal form
and operation of innate constraints.

I distinguish internal representations of particular external
objects from internalizations of general constraints that lmve
governed all such objects and their transformations throughout
evolutionary history. Particular foods, predators, or places of
safety or d~nger, having varied from one locale or epoch to
another, could not be internalized as innately fixed knowledge
and are largely learned. However, the invariable constraints,
such as that relative Jight/warmtll alternates with relative
dark/cold in a 24-hour cycle, or that space is locally Euclidean
and three-dimensil;mal, can be shown to have led to the inter
nalizations of a circadian clock and an intuitive grasp of ki
nemati~ geometry that are probably i_mate (Shepard 1984).

Smolensky is quite explicit about the difficulty ofcharacteriz
ing representations at the subconceptuallevel, whicll does not
preserve the semantics of the consciously accessible conceptual
level (sect. 5). Commentators have sometimes voiced the objec
tion that even if a connectionist system manifests intelligent
behavior, it provides no understanding of the mind because its
workings remain as inscrutable as those of the mind itself. The
force of this objection is mitigated if the principles of learning
and inference that govern the internal representations can be
explicitly stat~d - even if the form of the internal representa
tions themsel~es cannot. However, because significant struc
ture must be built into the system before effective learning and
"inference can take place, we face two alternatives: Either we
must formulate how the required structure is ·to be imple
mented at the inscrutable subconceptual level; or we must
formalize explicit principles for the evolution of connectionist
systems analogous to the principles of learning in individual
systems.
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From connectionism to eliminativism

$tephen P. Stich
e~jJartment of Philosophy. university of California, San Diego, La Jolla,

C./ff.92093

sinolensky's portrait ofconnectionism is a welcome and exciting
DOC. The burden of my commentary will be that if the project he
describes can be carried off, the consequences may be much
more revolutionary than he suggests. For if it turns out that
Smolensky-style connectionist models can, indeed be con
s:tnJcted for a broad range of psychological phenomena of both
the "intuitive" and the "consciously conceptualized" sort, then,
it seems to me, a pair of very radical conclusions will plausibly·
fonow. The first is that folk psychology - the cluster ofcommon
sense psychological concepts and principles that we use in
everyday life to predict and explain each other's behavior - is in
serious trouble. The second is that much psychological theoriz
ing that cleaves to what Smolensky calls the "symbolic para
digm" is in serious trouble as well. In both caSes, the trouble I
envision is the same: The theories are false and the things they
posit don't exist. Since space is limited, I'll limit my remarks to
theories in the symbolic paradigm, and leave folk psychology for
another occasion.

A central thesis in Smolensky's rendition of connectionism is
that a "complete, formal account of cognition" does not "lie at
the conceptual level" but at the "subconceptuallevel" (sect. 2.4,
para. 5). Earlier, in making much the same point, he tells us that
"complete, formal and precise descriptions of the intuitive
processor are generally tractable not at the conceptu.allevel, hut
only at the subconceptuallevcl" ((8)c, sect. 2.3, para. 7, empha
sis added). But whatexactly does Smolensky have in mind when
he claims that a complete, formal, precise account ofcognition is
to be found only at the subconceptuallevel? As I read him, what
Smolensky is claiming is that the real, exceptionless, counterfac
tual supporting generalizations or laws of cognition are only to
be found at this level. At-the conceptual level, by contrast, such
generalizations as we have will be at best rough and ready
approximations that may be more or less accurate within a
limited set of boundary conditions, and generally not very
accurate at all when we go outside those boundary conditions. If
this thesis turns out to be correct, then the cognitive states and
processes posited by connectionist models will be the ones
describable by genuine laws ofnature. but there will be no laws
describing the doings of the semantically interpreted mental
symbols posited by theories at the symbolic level. If we want
accurate preaictions of the phenomena, they will have to be
sought at the suhsymbolic level. As Smolenslcy would be the
flrst to agree, the thesis he sketches is at this point only a hopeful
guess:. To defend it requires that connectionists actually build
models for a broad range ofphenomena, and demonstrate that
they do indeed yield more accurate predictions than competing
models at the conceptual level. But let us aSsume that the thesis
will ultimately be estahlished, and consider the consequences
for theories and posits at the conceptual leveL

To start us off, an analogy may prove helpful. For Lavoisier, in
the last quarter of the 18th century, heat was caused by caloric,
an "exquisitely elastic fluid" "permeating all nature, which
penetrates bodies to a greater or lesser degree in proportion to
their temperahue" (quoted in Gillispie 1960, p. 240 & p. 239).
When Sadi Carnot formulated the second law of thermody
namics in 1822, he "still handled caloric as flowing from a real
reservoir ofheat down a continuous gradient" (Gillispie 1960, p.
241). For many years the theory ofheat that posited caloric was
embedded in an evolving, progressive, sophisticated research
program th,at generated both explanations of observed phe
nomena and increasingly accurate predictions. Ultimately,
however, that theory was rejected and replaced by the kinetic
theory. Though the detailed history ofthis transition is a compli-

cated story, a crucial factor was that the new theory sustained
more accurate predictions and better explanations over a broad
er range of phenomena. Moreover, since the kinetic theory
posits no "exquisitely elastic fluid," and recognizes no laws
governing its flow, those who were prepared to grant that the
kinetic theory is better concluded that caloric theory is false, and
that the fluid it posits does not exist.

Consider now the analogies that will obtain between this case
and the case of conceptual level psychological theories if Smol
ensky's thesis turns out to be right. Like caloric theory, the
conceptual paradigm has sustained an evolving, progressive,
sophisticated research tradition. But if Smolen sky is right, we
will find that the generalizations of conceptual level theories
(like those of caloric theory) are only approximations and apply
only in limited domains, while the generalizations ofsubconcep
tuallevel theories (like those ofkinetic theory or its successors)
are "complete" and "precise." Against the background of this
analogy, it is tempting to conclude that if Smolensky's thesis is
right, then conceptual level theories are false. and the entities
they posit do not exist.

There is reason to suppose that Smolensky himself would not
resist the first halfof this conclusion. For at one point he tells us
that "the relationship between subsymbolic and symbolic modw
els is ... like that between quantum and classical mechanics"
(sect. 5, para. 11). But, ofcourse, if quantum mechanics is right,
then classical mechanics is wrong. Whatever its virtues, and
they are many, classical mechanics is a false theory.

The second half of the conclusion I'm trying to coax from my
analogy is the more distinctively eliminativist half. (For some
background on "eliminativism" see P. M. Churchland 1894, pp.
43-49; P. S. Churchland 1986, pp. 395-99; Stich 1983, Chapter
11.) What it claims is that the entities posited by conceptual
level theories are like caloric in one very crucial respect; they do
not exist. From his one briefmention of "naive ... eliminative
reductionism" (sect. 10, para. 2). 1'd guess that Smolensky
would be more reluctant to endorse this half of my conclusion.
Nor would such reluctance be patently unjustified. For it is
certainly not the case that whenever one theory supplants
another we must conclude that the entities posited by the old
theory do not exist. Often a more appropriate conclusion is that
the rejected theory was wrong, perhaps seriously wrong, about
some of the properties of the entities in its domain, or about the
laws governing those entities, and that the newer theory gives
us a more accurate account ofthose very same entities. Thus, for
example, pre-Copernican astronomy was very wrong about the
nature of the planets and the laws governing their movement.
But it would be something ofa joke to suggest that Copemicus
and Galileo showed that the planets Ptolemy spoke of do not
exist. So to defend the eliminativist halfofmy conclusion, I must
argue that the connectionist revolution, as Smolensky envisions
it, bears a greater similarity to the rejection ofthe caloric theory.
than to the rejection of geocentrism.

In arguing the point, it would be useful if there were, in the
philosophy of science literature, some generally accepted ac
count of when theory change sustains an eliminativist conclu
sion and when it does not. Unfortunately, however, there is no
such account. So the best we can do is to look at the posits of the
old theory (the ones that are at risk of elimination) and ask
whether there is anything in the new theory that they might be
identified with. Ifthe posits of the new theory strike us as deeply
and fundamentally different from those of the old theory, in the
way that molecular motion seems deeply and fundamentally
different from "exquisitely elastic" caloric fluid, then the elim
inativist conclusion will be in order. Though, since there is no
eas·y measure of how "deeply and fundamentally different" a
pair ofposits are, our conclusion is bound to be ajudgment call.
That said, let me offer a few observations which, I think, support
a proeliminativist judgment.

Smolensky notes, quite correctly in my view, that in the
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dominant approach to cognitive modeling (the approach that he
calls the "symbolic paradigm") symbols play afundamental role.
He goes on to note that these symbols have a pair offundamental
characteristics: '!hey refer to external objects and they are
"operated upon by 'symbol manipulation'" (cf. sect. 1.3., para.
3). Smolensky does not elaborate on the idea that symbols are
operated on by symbol manipulation, but I take it that part of
what he means is that, in the mod~ls in question, symbol tokens
are assumed to have a reasonably discrete, autonomous exis
tence; they are the sorts of things that can be added to, removed
from or moved around in strings, lists, trees and other sorts of
structures, and this sort of movement is governed by purely
funnal principles. Moreover, in the symbolic p~digm, these
sorts of symbol manipulations are typically taken to be the
processes subserving various cognitive phenomena. Thus, for
example, when a subject who had previously believed that the
hippie touched the debutante comes to think that the hippie did
not touch the debutante, symbolic models will capture the fact
by adding a negation operator to the discrete, specifiable symbol
structure that had subserved the previous belief. Similarly,
when a person acquires a new concept, say the concept of an
echidna, symbolic models will capture the :filct by adding to
memory one or more symbol structures containing a new,
discrete, independently manipulable symbol that refers to a
certain class of external objects, namely echidnas.

In connectionist models, by contrast, there are no discrete,
independently manipulable symbols that refer to extemal ob
jects. Nor are there discrete, independently manipulable clus
ters of elements (or "subsymbols") which may be viewed as
doing the work ofsymbols. When a network that had previously
said yes in response to "Did the hippie touch the debutante?" is
retrained to say no, it will generally not be the case that there is
some stable, identifiable cluster of elements which represent
the proposition that the hippie touched the debutante, both
before and after the retraining. And when a network that was
previously unable to give sensible answers to questions about
echidnas is trained or reprogrammed to give such answers,
there typically will not be any identi£able cluster of elements
which have taken on the role of referring tu ecllidnas. Instead,
what happens in both of these cases is that there is a widespread
readjustment of weights throughout the network. As Smolensky
notes, the representation ofinformation in connectionist models
(particularly in parallel distributed processing style models) is
widely distributed, with each unit participating in the represen
tation of many different aspects uf the total infonuation repre
sented in the system. This radical disparity between strategies
of representation in symbolic and PDP models makes a smooth
reduction - or indeed any reduction - of symbols to elements
(or to pattems of activity) extremely implausible. Rather, ]
submit, the relation between mental symbols and connectionist
elements (or patterns of activity) is akin to the relation between
caloric and molecular motion. If this is right, then in those
domains where connectionist models prove to be empirically
superior to symbulic alternatives, the inference to draw is that
mental symbols do not exist.

From data to dynamics: The use of multiple
levels of analysis

Gregory O. Stone
Dflpartment of Psychology, Arizona State University, Tempfl, Ariz. 85281

While focusing on the substantive differences between connec
tionism and traditional cognitive science, Smolensky's analysis
illustrates a fundamental epistemological difference. In the
traditional approach, the symbolic level is the "correct" level of
analysis. Other levels, such as hardware implementation, are
effectively considered irrelevant. In contrast, Smolensky argues
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that "successful lower-level theories generally serve not to
replace higher-level ones, but to enrich them, to explain their
Successes and failures, to fill in where the higher~level theories
are inadequate, and to unify disparate higher-level accounts."
Thus, connectionism may portend a revival, in cognitive sci
ence, of theoretical pluralism - the philosophy that no single
perspective can fully account for observed phenomena Games
1967).

Smolensky presents three levels of analysiS (neural, subcon
ceptual, and conceptual) as a priori theoretical constructs. I will
argue, however, that the choice oflevcls derives from a strategy
of maximizing the explanatory power of the pluralistic frame
work in which they are embedded. In other words, levels of
analysis are primarily pragmatic constructs.

What are the advantages of a pluralistic methudology? One
common objection to connectionist models is that their com
plexity hinders an understanding of what they are doing and
why. This conceptual opacity is, to some extent, a price paid fOr
their flexibility and generality of application, allowing models
built from afew basic mechanisms to account for a broad range of
disparate phenomena. On the other hand, mechanisms ex
plicitly tailored for specific operating characteristics tend to be
limited in tlIeir generality. This often leads to a profuSion of
unconnected, but eminently testable and transparently in
terpretable, special-purpose models. A methodology which
uses and interrelates both levels of analysis can exploit the
strengths and overcome the weaknesses of each when consid~

ered in isolation.
A concrete example will help to clarify this point. Reeves and

Sperling (1986) asked subjects to report, in order, the first four
items (digits) from a rapidly presented visual sequence. But
subjects first had to shift their attention from another part of the
visual field to the digit stream. The attention shift altered the
perceived order of items in the sequence, producing an invert~

ed-U shaped recall function. In the first phase of their analysis,
tlley found that a scalar precedence or order score for each item
in each condition provided a very powelful account of the data.
However, this analysis invoked a large number of parameters
and offered no conceptual insigllt into why the observed prece
dences were obtained. Their second level ofanalysis produced a
close fit to these precedence scores by treating them as the
result of the temporal integration of an item's input strength. A
slow-opening attention gate reduced the input strength of early
items, which lead to the inverted-U shape ofprecedence scores
across positirm. This level of analysis provided a conceptual
framework with greater parsimony; however, it was domain
specific and provided no link to temporal order in short-term
memory in the absence of an attention shift:.

Grossberg ami Stone (1986) extended the analysis to the
subconceptual level by mapping the Reeves and Sperling model
into the short-term memory dynamics of adaptive resonance
theory. The analysis began with an abstraction from the ex
tremely complex activation dynamics to an emergent and more
tractable functional form relating the relative precedence
strengths. This emergent functional foml is necessary for stable,
long-tenn encoding. When this functional form was applied to
the Reeves and Sperling model, several' unexpected principles
of short-term memory dynamics and attentional gain control
were revealed. Furthennore, the experimentally derived order
scores were accounted fOr using a mechanism which plays a
critical role in adaptive resonance theory treatments of other
short-term memory phenomena, as well as treatments ofcatego~
rization, unitization, and contextual facilitation (see articles
reprinted in Grossberg 1987a; 1987b). The key point in this
example is that it would have been difficult - ifnot impossible
to have achieved the same degree ofinsight by mapping the data
directly into the class ofpossible short-term memory dynamics.

Each level of analysis in the preceding example served an
important role in the overall methodology.

The descriptive level ofanalysis encapsulates the raw data in a
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more tractable, but relativeJy atheoretical fonn. Computational
overhead is reduced in the search fur mechanisms and func
..9~ fonns with optimal explanatory power, and a descriptive

del can reveal fundamental structure underlying the data.
e functional level of analysis expresses structure in the data

iriterms of high-order conceptual constructs. At this level, one
d~velops functional characterizations of processing, such as
temporal integration of input strength. This is a potentially
broad class of analysis, of which the symbolic paradigm is a

~~.ycial case.
ii(fhe dynamic or subconceptual level of analysis provides

IJiechanlstic details underlying the broad constructs of the
functional level. What appeared to be simple, domain-specific,
~~ocesses are now seen as the subtle interaction of many more "
g~neral mechanisms.

l'erhaps the most important component of the methodology is
the development of overarching design principles that interre
late the levels of analysis and govern their theoretical develop
ment. Because functional constructs arise from subtle, non
linear interactions between dynamic mechanisms, alteration of
a single mechanism can affect the performance of the whole
system. As a result, preVious predictive capability can be Jost in
some attempt to introduce new predictive capabilities. Design
principles identify the critical features ofa mechanism responsi
ble for a desired operating characteristic. Ifa mechanism must
be redesigned, previously identified principles remain to guide
the process; one need not begin again from scratch. Design
principles provide a conceptual bridge between dynamic mech
anisms and functional constructs, and thus help elucidate what a
dynamic system model is doing and why.

Work remains to be done in developing a powerful, pluralist
framework for cognition and behavior. In particular, much uf
the methodology currently used by both the symbolic and the
connectionist paradigms will need to be replaced or reworked.
Smolensky's insightful investigation of fundamental assump
tions is an important contribution to the development of this
framework. Unless the development ofa pluralist methodology
continues, connectionism will fail to achieve its great explanato
ry potential.
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On the proper treatment of thermostats

David S. Touretzky
Computer Science Department, Carnegie Mellon University, Pittsburgh Pa.
15213

"Eliminative" connectionists (Pinker & Prince 1988) are the
radicals of the connectionist movement. They make the boldest
claims with the least evidence. The contribution ofSmolensky's
target article is that it eloquently states (and even numbers) the
points of faith that define the eliminative stance. I cannot prove
Smolensky's PTC (proper treatment of connectionism) wrong,
but I believe its principal and most radical claim, that fonnal
symbolic theories of intelligence will tum out to be inadequate
fur explaining human perfonnance, is very badly in need of
some supporting data. The problem is most noticeable with
respect to language.

Hypothesis (16) of PTC assigns responsibility for language to
an intuitive processor, while (8a-c) reject the notion that this
processor might be implemented in the brain as a fonnal
sequential rule interpreter. Many nonconnectionists share this
view. But in the collective restatement of (8a-c) as (8), PTC
makes its far stronger, radical claim: that it is impossible in

principle to give an accurate account of intuitive phenomena at
the symbolic level. Such an account can be achieved at a lower,
nonsymbolic level, we arc told. This is where eliminativists get
themselves into trouble.

PTC is not a competence theory, it is a perfonnance theory.
On the otber hand, PTC is supposed to be more abstract than
the neural level; it is not obligated to explain every hesitation
and every muscle twitch. What sorts of perlormance phe
nomena might PTC account for that symbolic theories cannot?
In any physical system there are bound to be insignificant jitters
that can only be explained by going to a lower level of descrip
tion. In order for PTC to be confirmed, its supporters must be
ahle to demonstrate significant linguistic effects that do not
admit symbolic-level explanations. This introduces two themes
for debate: Which perfonnance effects are significant, and
whicb of those are not covered by symbolic-level theories?

Consider a thermostat with setpoint To whose behavior is
determined by the following rule:

IF T < To THEN turn-on(fumace)
ELSE turn-oH(furnace)

It makes no difference tbat the thermostat has no symbols and
no rule interpreter inside it; the above rule is a description oftbe
thennostat's bebavior that any cognitive scientist would feel
comfortable with. It is a fonnal rule because it generates precise
predictions and can be implemented in various ways. It is a
symbolic-level rule because it is expressed as relationships
among the tenns that actually define the domain: ambient
temperature, setpoint, and furnace activity. It makes no referw
ence to mechanisms or processes whose behavior is unrelated to
the domain description.

Now suppose that as the switch inside the thennostat closes,
it bounces a few times, causing a brief oscillation in the output
signal. Furthermore, imagine that the furnace which the ther
mostat controls emits heat the instant it is told to do so. Our
hypothetical thennostat-fumace combination therefore pro
duces a few milliseconds of temperature oscillation whenever T
drops below To, followed by a steady temperature increase until
To is again exceeded. But the forrnal account of the thermostat's
behavior says nothing about bouncing switch contacts, because
that is an implementation detail that has nothing to do with the
domain. Therefore it cannot explain the oscillation.

The temperature OScillation problem may be dealt with in
several ways. (i) Classify extremely short-duration phenomena
as irrelevant on teleological grounds (the thennostat's purpose is
broadwtimescale temperature control, not micmregulation) or
psychophysical ones (people who choose the thermostat's set
point are not sensitive to the oscillations). In either case the
oscillations are excluded from the data. (ii) Discount the oscilla
tions as perfonnance error: They may be detectable, but need
not be explained by a competence theory of temperature con
trol. (iii) Declare tbe OScillations relevant and significant, and
redo the formal account. This leads to a more complex behav
ioral rule for the thermostat, based on the difference between
the current time and the time the ambient temperature most
recently dropped below the setpoint. Because it is a symboliC
level theory it stili says nothing about bimetallic switches, and
thus docs not explain the cause of the oscillations; it merely
reproduces them. (iv) Declare that in reality there is no fonnal
symbolic level, therefore it is impossible to give a fully adequate
account of thermostatic temperahlre control at this level of
description. Instead, we should model thennostats as systems of
contacts and springs and develop equations to describe their
switching dynamics.

Which (If these strategies is the correct one? Each has been
applied to some aspect of language: (i) excludes nonlinguistic
phenomena such as breathing patterns while speaking; (ii)
relieves us of the need to account for ungrammatical utterances
in a competence theory; (iii) argues for the recognition of what
are obviously implementation-dependent limitations, such "as
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people's inability to handle deeply center-embedded sen
tences. In other words, (iii) shifts the emphasis from compe
tence to pcrlormance, which, as Smolensky notes, is in part
what distinguishes cognitive theories from linguistic ones. The
eliminative heresy of PTC is (iv); it is also espoused by Rumel
hart and McClelland (1986a; 1986b).

Even a diehard eliminativist would agree that the significant
aspects of thermostat behavior can be described perlectly well at
the symbolic level. The fundamental question regarding PTC
and language is whether the effects attributable to the underly
ing dynamical system are as trivial and incidental as switch
bouncing, or are instead profound, influencing the very struc
ture of our linguistic filCility. [f the latter is the case, those who
follow approach (iii) wiH be forced to produce bizarre, contorted
rules in order to give a symbolic account of perlormance phe
nomena that PTC can explain quite naturally. Due to the limited
scope of current connectionist models, there is not yet any
convincing evidence that this will in fact happen.

Even if thc eliminative hypothesis is correct, why should we
rely on relaxation as the dominant metaphor for subsymbolic
computation? Simple dynamical systems are attractive becausc
they are mathematically tractable, but if connectionists really
expect to unravel language, the jewel ofcognition, they had best
give up the idea ofdoing it with either statistical mechanics or
heteroassociators. This rules out virtually all disbibuted con
nectionist models to date, for example, Rumelhart and Mc
Clelland (1986b); McClelland and Kawamoto (1986); Sejnowski
and Rosenberg (1987); and Allen (1987). As any defender ofthe
symbolic-level paradigm would argue, connectionist models
with persistent intemal state Gordan 1986; McClelland, person
al communication), modular structure (Derthick 1987a; 1987b;
Touretzky & Geva 1987), and built-in mechanisms ror complex
operations such llvariable binding (Touretzky & Hinton 1985;
Dolan & Dyer 1 '87) stand a better chance of succcss.

Connectionist have been exploiting tabula rasa learning and
simple physics 4nalogies like the proverbial drunk searching for
his keys unde'r a lamppost: because that's where the light
happens to be. There is also plenty of light under the fonnal
symbolic lamppost favored by traditional cognitive scientists.
Perhaps the keys are lying in the shadows.
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The essential opacity of modular systems:
Why even connectionism cannot give
complete formal accounts of cognition

Marten J. den Uyl
Vakgroep Psychonomie, University of Amsterdam, 1018 XA Amsterdam.
Netherlands

There can be no doubt that Smolensky has done an excellent job
at unravelling some of the conceptual knots that connect the
symbolic and subsymbolic paradigms in cognitive science. [find
myself in close agreement with much of what Smolensky has to
say about the promises connectionism holds for deepening our
understanding of the human mind. Yet there is one issue where
I strongly disagree with the views espoused by Smolensky.

Let me begin my argument with the observation that cog
nitive systcms that perlorrn complex tasks tend to adopt a
modular architecture; the more complex the tasks and the wider
the range, the more inevitable the assumption of modularity
appears to become. Modular inronnation processing is a well
known concept in theories of computation and it has recently
come to play an important role in cognitive theories due to the
work of Fodor (1983; see also multiple book review, BBS 8(1)
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1985). We might accordingly expect connectionist models also
to adopt modular architectures. A large majority of the work in
connectionist modelling is in fact concemed with connectionist
modules, that is, with small, specialized, and relativelyencap
sulated parts of some hypothetical larger processing structure.
Typically this encompassing stru[:ture is represented only by
way of some input/output and bookkeeping routines that feed
and control the connectionist module.

Modular architectures present some complications for con
nectionist theories and it seems that Smolensky systematically
underrates tlle importance of these problems. [ believe that
because· of this neglect a confusion of levels shows throughout
his exposition. The confusion is not between levels of descrip
tion, which SllIolensky goes at·great length to disentangle, but
between levels oJaggregation. The point is that at various places
Smolensky appears to assume that the characteristics of a single
connectionist module may be transplanted unmodified to an
extensive, processing stmcture consisting of many intricately
interrelated modules. For example, in his Table 1 (sect. 4),
Smolensky presents some relations between neural and sub
symbolic architectures. It strikes me that many of the discrepan
cies Smolensky observes - e.g. "unifurmly dense connections,"
"simple topology of distal projections between node pools" 
have their source mainly in an inappropriate comparison bc
tween a single, structurally homogeneous, connectionist mod
ule and an extensive neuronal structure that quite likely sup
ports an intricately modular processing structure.

Ifwe take the human cognitive system to be a huge processing
structure consisting of many interrelated connectionist mod
ules, it follows that we may distinguish two different domains for
connectionist theorizing: In one domain the primary concern is
with the development of models for within-module processing,
that is, with mod~ls that optimally perform the satisfaction of
"soft constraints"; the second domain is primarily concerned
with the development of theories of the modular structure of
connectionist models, that is, with analyzing fomls of interac
tion between connectionist modules. Obviously, this distinction
can only bc drawn very roughly at present, since there exist
many interdependencies between tlle two sets of problems. (It
may be noted that the distinction parallels in part, and only in
part, the distinction between "distributed" and "local" connec
tionist theories.) It would seem that Smolensky's characteriza
tion of connectionist theorizing - e.g. tlle predominant role it
assigns to continuous mathematics - holds nicely for theories of
within-module processing, which may indeed be the domain of
connectionism proper.

The situation is much less clear when we consider the the
oretical domain ofbetween-mQdule interactions. It would seem
that there are cases where the interactions between modules
can be adequately described by the same kinds of differential
equations as used in analyzing within-module processing. Prob
ably, however, this will only work ror "modeling simple aspects
of cognition-like relative times for naming words in various
contexts, or tlle relative probabilities of perceiving letters in
various contexts" (S-molensI..-y, sect. 2.3., para. 8).

Before we turn to more interesting cases ,of modular interac
tions, I will attempt a more specific interpretation ofthe general

. notion of a connectionist module. In the context ofSmolensky's
harmony theory (Smolensky 1984a; 1984b) it seems most natural
to identify a module with a subset of units that cooperate
simultaneously in achieving a "best fit set of inferences" (sect.
9.) - a highest harmony completion - over a part of a larger
network. It is further implied that the process of "simulated
annealing" is spatially bounded by al~armonymodule. It follows
naturally that a module is closed or "opaque," that is, not
passing activation to other modules, as long as it is in a state of
"high computational temperature," when its internal activation
pattern is highly erratic.

The discontinuities in activation passing that result naturally
from modular structures are not in themselves insurmountable
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contradicts (8c), the subconceptuallevel hypothesis, which he
takes to be a key element of the subsymbolic paradigm. The two
principles, as fonnulated, are indeed strictly inconsistent. How
ever> the conflict concerns only the level at which exact, com
plete, and precise fonnal explanations o(behavior are possible.
Principle (8c) asserts that such descriptions of the intuitive
processor will be possible only at the subconcephlallevel; (10)
asserts that there are such descriptions at the conceptual level.
All the work in generating a conflict ~etween the two is being
done by the demand for an exact, complete, and precise formal
description of the intuitive processor.

But there are several problems with that demand. First, it is
not at all clear just what is being demanded. How are "exact,"
"complete," and "precise" to be understood? Smolensky does
not say. Second, and more important, in so fur as it is clear what
is meant by these terms, it is far from obvious that we should
expect an exact, complete, and precise formal description to
exist at any level of the inhlitive processor. Rather, one might
expect all such formal models to be at best approximately
instantiated by the actual neural hardware. However, if one
drops'the demand for precise and complete formal description,
the strict contradiction between the two paradigms disappears.
There is no reason why the subsymbolic connectionist model,
which is approximately instantiated by the neural structure at
some level of description, might not be an implementation of a
symbolic model, which is instantiated at a higher level of
description. Indeed, Smolensky seems to accept this possibility
with respect to those cognitive processes that involve conscious
rule application. And he allows that even with respect to intu
itive processors, conceptual level descriptions will be crudely
approximated by the subsymbolic models he prefers.

I suspect that the important question is not, "At what level are
complete precise formal descriptions possible?" but rather, "At
what level will we find powerful insightful generalizations that
help us understand the basis of cognition?" The questions are
distinct, since interesting insightful generalizations about the
formal nature of cognition need not involve fonnal models that
are complete, exact, and precise. Smolensky uses the relation
between the macroscopic description ofa gas and its underlying
microstructure to illustrate his view of the relation between
symbolic and subsymbolic models. But the example might have
a moral quite other than the one he intends. Though the
regularities describing the emergent properties of the gas may
be less precise and exact than those governing the mechanical
interactions of its microscopic constituents, they may be the
interesting or important ones for many explanatory purposes.
Indeed as Putnam (1975) has argued, one should expect this to
be the case when the macroproperties and macroregularities are
relatively invariant across substantial variations in the underly
ing microstructure. Conversely the microstructure, like the
structure of subsymbolic processes, is most important when
variations in its properties greatly affect or constrain the nature
of macrostructural (or conceptual level) regularities.

Thus it is probably best to embrace the nonreductionist and
seemingly ecumenical viewpoint to which Smolensky turns in
his concluding section. One should explore the nature ofcogni
tion at many levels ofdescription, recognizing that in SOme cases
the interesting regularities will be at the higher levels of de
scription, but that in others they will be found at the subsym
bolic level in structures and processes that have their own
distinctive regularities, which can be no more than very in
completely understood in terms of the "shadows" or "images"
they cast on the concephmllevel of description.

One last caveat. Though there is value in emphasizing the
diversity of competing approaches, one should not create dif
ferences where none really exist. For example, contrary to what
Smolensky implies, the standard symbolic models of cognition
make regular use of nonmonotonic reasoning (all you need is a
commitment to a total-evidence condition) and processes which
have a semantics other than that used to define the task domain.

Robert Van Gulick
Department of Philosophy, Syracuse University, syracuse, N. Y. 13210

Smolensky explicitly rejects any blandly ecumenical views
about the relation between connectionism and traditional ap
proaches to the symbolic modeling ofcognition. In'particular,
he rejects the suggestion that connectionist systems fit within
the standard' framework as models of lower-level cognitive
processes and as implementations of more conventional AI
programs. Instead, he believes that connectionism offers an
alternative symbolic model ofhigher-Ievel cognitive processes,
one that conflicts with the traditional approach. He asserts that
the symbolic and subsymbolic paradigms for modeling cognition
are strictly incompatible; they involve mutually inconsistent
commitments.

Of course no one favors bland ecumenicism, We all enjoy a
good intellectual fight, and a conflict of competing paradigms
will probably produce more progress than would a harmonious
accommodation that blurs the differences among diverse ap
proaches. However, I find what Smolensky has to say about the
incompatibility of the two paradigms less than convincing.
Moreover, at points, especially in his concluding section, he
seems to express decidedly ecumenical sentiments himself,
despite his earlier claims.

The case for the incompatibility ofthe two paradigms is made
most directly in Section 2.4., though even there it is qualified to
some degree. Smolensky distinguishes between intuitive cog
nitive processes and those which involve conscious rule applica
tion. It is only with respect to the rormer that he offers an
argument for strict incompatibility. He wishes to reject princi
ple (10), which states that v~lid connectionist models are merely
implementations of symbolic programs. His reason is that (10)

stacles for continuous analysis. However, a new hwel of
dfuplexity is introduced, where the interactions between mod

uIy~ take the form ofpassing not one-dimensional quantities of
aGti\,ation but discrete patterns of activity between modules.

ontinuous mathematical furmalisms lose their appeal quite
f~ticallywheninteractions between modules involve interac

nS between complex patterns of activity (cf. Smolensky, sect.
.3,8b).
Examples of cognitive tasks where these fOims of inter

modular interaction seem to be required in order to atrive at
~gequate connectionist models are ubiquitous. The most con
~Picuous case is "conscious rule interpretation." Touretzky's
"BolzCon" model, which takes some important first steps to
ward implementing this human capability in a subsymbolic .
model (Touretzky 1986), is a highly modular system, using more
than its share of patterned intermodular interactions. Another
e:l{ample is qualitative judgment, the striking capability of the
human mind for fast, global, evaluative judgments. I have
argued elsewhere (den Uy11986) that this capability can be best
modeled in a connectionist system by assuming a specific modu
lar architecture involving patterned interactions between stim
ulus and resonance patterns.

Why, then, should we reject the position that "the complete
fonnal account of cognition.. lies at the subconceptual
level"? Ifmy account of modularity in connectionist systems is
basically correct, then the connectionist pro'per may still hope to
devise "complete and fonnal" accounts ofisolated connectiQnist
modules. However, cognition is an attribute that may charac
terize systems as a whole, not single modules. The connectionist
determined to study the performance of complete ~odular

systems must accept that many ofthe most interesting behaviors
cannot be adequately captured by mathematical formalisms.

Has the case been made against the
ecumenical view of connectionism?
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It may be that some such features "come for free" in connec
tionist models, but whether free or otherwise they are certainly
present in standard symbolic models.

The reality of the symbolic and subsymbolic
systems

Andrew Woodfield and Adam Morton
Department of Philosophy, University of Bristol, Bristol BSS 1TB, Great
Britain

Smolensky's picture ofhow the symbolic and subsymbolic levels
are related runs together a thesis about two systems and a claim
about the relative explanatory capacities of two paradigms. It
would be simpler to theorize about the relations between levels
for which one claims ontological reality, without at the same
time trying to locate oneself in a paradigm.

Consider the following two-systems hypothesis: There are
two different abstract types of system which the human brain
can be taken to instantiate, symbolic and subsymbolic. Given a
particular brain that instantiates both, how might the activities
of those two system-tokens be related?

Case (1) Division of labour. Just as the agent may play the
piano with one hand while stilTing coffee with the other, so the
cognizer may perfurm symbolic operations with one part of his
brain while doing subsymbolic computation with another part.

Case (2) Killing two birds with one stone. Just as ,ID agent can,
in one ann movement, both signal a turn and wave to a friend, so
the cognitive agent might, via one set of neural events, simul
taneously manipulate symbols at the conceptual level and per
form a subsymbolic operation. Two cognitive processes, func
tionally independent ofone another, happen to be corealized in
a very versatile physical substrate.

Case (3) The "by" relation. Just as an agent may enter into a
contract by signing his· name, so a cognizer may carry out a
symbolic process by performing subsymbolic operations. Two
levels ofcognition are both mediated by the same neural events,
but they are not functionally isolated. The symbolic process
emerges out of the subsymbolic, or is "levelwgenerated" by it
(Goldman 1970). A connectionist machine can, under certain
conditions, simulate a von Neumann machine. Smolensky sug
gests, analogously, that human beings, unlike digital comput
ers, might be cognitively hard in viltue of being soft madlines
that have attained a high level ofcomplexity. It is worth empha
sizing that if symbolic thinking is indeed an emergent, it really
exists, just as the act of entering into a contract exists. You
cannot be elllergentist and eliminativist about hard processing.
The position we offer as a foil to Smolensky's is that over a
significant range ofcognitive t~ks, the human brain functions as
a symbol-manipulator by being a subsymbolic system.

A complication is introduced by the suggestion that human
symbolic calculation might only approximate hardness. This
gives rise to a new thought about reduction, and an analogy.
Smolensky suggests that "symbolic" theories may be reducible
to "suhsymbolic" theories in roughly the same way that classical
mechanics is reducible to quantum mechanics. This analogy
with physies, while illuminating, captures neither the on
tological commihuent to the two levels nor the suggestion that
the symbolic system in humans arose historically out of a new
arrangement of preexisting capacities. Analogies for develop
mental emergence are rare in physics, but plentiful in biology.
For example, ethologists have proposed that some social be
haviour in animals (display, courtship rituals) evolved out of
displacement activities produced by conflict between basic
instincts.

Second, the fact that theories at the symbolic level are only
approximately true of humans would not undenninc the on
tological commitments of the "two systems" hypothesis. The
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brain might really instantiate a symbolic system that was type
identified via an idealized specification. Human pClfonnance
usually falls short ofperfection. To succumb to "as if' locutions,
or to say that there is basically only one system after all, is
incompatible with the "emergence" thesis. Smolensky som€w
times appears to be tempted in this direction. To claim, howev
er, that the human brain instantiates nothing but a subsymbolic
system prevents one from saying, as Smolensky wishes to do,
that the theory of subsymbolic processing explains how the
human brain does manage to instantiate a symbolic system.

Third, although the subsymbolic level may explain why cer
tain symbolic level descriptions are true, the direction of expla
nation could equally well go the other way. From certain
perspectives, explanations at the symbolic level could be more
basic than explanations at the subsymbolic level Consider again
the analogy with action-theory. A child approximately succeeds
in the act of eating jelly with a spoon, by moving his hand, his
head, his mouth. Although the movement-description is lower
level than the act-description, the act-description is explana
tOlily more basic in a teleological sense, since we can explain
why he performed that sequence of movements by reference to
the act. Similarly, a piece of dumsy reasoning might be ex
plained either in terms of the goals and nonns that the thinker
was trying to satisfy, or in tenns of the subsymbolic processes
that mediated his actual perfonnance.

Why does Smolensky see his two "paradigms" as rivals? One
reason, perhaps, is that he is over-reacting to an unfair, deroga
tory charge made by some High Church computationalists, that
connectionist systems are "mere implementations" of systems
whose "proper" level of description, qua cognitive, is symbolic.
Such a charge has no sting. For one thing, there are probably
many kinds ofcognitive processes which do not use a language
like system of internal representation. More importmlt, for
processes that do require such representations, there is nothing'
"mere" about discovering that the processor in question
emerges out ofa connectionist system. To establish a convincing
example ofa case (3) relationship would be a great victory, and a
vindication of the PDP (parallel distributed processing) ap
proach. We learn how the symbolic processor docs its job, but
we also gain deeper insight into what is being done, from both a
psychologi<.:al and an evolutionary perspective.

Yet not even global success of this sort would prove that "the
complete formal account of cognition lay at the subconceptual
level," for this phrase presupposes one fonnal account that is
complete. There might instead be two formal descriptions, each
being a complete account of its own system, but neither giving a
complete account of cognition as a whole.

Editorial Commentary

Some senses of "level" seem relatively clear and well defined:
the hierarchy of compiled programming languages and the
software versus hardware levels; the function/stlUcture dichoto
my; molar/molecular or macro/microlevels of description; per
formance/mechanism, behavior/neural s·ubstrate. All these
seem to involve a viable higher/lower distinction. Perhaps
conscious/unconscious processes can also be said to stand in
sOlne sort of superordinate/subordinate relation, although this
begins to impinge on unsettled aspects of the mind/body prob
lem. But what about "symbolic/subsymbolic"? Has an up/down
relationsllip that is infonnatively called "levels" really been
picked out here? On the face of it, symbolic and nonsymboJic
appear to be the only two relevant options - at least if one is
committed to an explicit formal definition of "symbolic" such as
Fodor's [BBS 3(1)] or Pylyshyn's [BBS 3(1)] - but this is just
parasitic on th_e software/hardware distinction, with no obvious
intenncdiaries. To attempt to flesh it out by defining yet another
up/down relation ~ "conccptual/subconceptual" - seems either



t be parasitic in turn on the conscious/unconscious dichotomy
o todeclare the existence of an intermediate level by fiat.
o~IIlilar remarks can be made about the subsymbolic/neural

tion. Have different levels, ordLffcrentsenses oflevel, been
fl~ted, or perhaps invented, in Smo[ensky's treabnent of

ectionism? For if we have no prior interpretative commit
ts, connectionism simply appears, to be a simulated or
lemented family of statistical algorithms for adjusting con-
tion strengths in an interconnected causal network whose
onnance cap~city and limits remain to be explored.

UU~'H'S Response

Putting together connectionism - again

Paul Smolensky
Department of Computer Science and Institute of Cognitivfl Science,
University of Colorado, Boulder, Colo. 80309-0430

Table 1. rhe format of this response. The commentaries
discussed in each category (sometimes in footnotes) are listed

in order of appearance

1. Levels of analysis
1.1. A framework for discussion.

Touretzky; Hanson; Antony & Levine; Dietrich &
Fields; Stich; Cleland; Van Gulick; Woodfield & Mor
ton; Prince & Pinker; Rey; Lloyd; Chandrasekaran~

Coel & Allemang
1.2. Commentaries compatible with PTe.

Hofstadter; Dellarosa; Lindsay; Golden; Rueckl
1,3. Misunderstandings of the PTC posttion.

EDITORIAL COMMENTARY; Quartonj Lakoff; Dietrich &
Fields; Touretzky; Rey; Schneider

1.4. Arguments against PTC's relation to the symbolic
approach.
Dyer; Touretzky; Chandrasekaran~ Goel & Allemang;
Schneider; Lloyd; Stich; Woodfield & Morton; Antony
& Levine

1.5. The neural level.
Lloyd; Mortensen; Rueckl; Stone; Bechtel; den Uyl

2. Treatment of connectionist models
Touretzky; den Uyl; Schneider; Golden; Stone; Lakoff;
Mortensen; Belew; Freeman; Dreyfus '& Dreyfus; Lycan

3. Treatment of symboliC models
Chandrasekaran~ Goel & Allemangj Lycan; Prince &
Pinker; Rey; Van Gulick; Lindsay; Nelson

4. Adequacy of connectionism in practice
Prince & Pinker; Dreyfus & Dreyfus; Freidin; Shepard;
Chandrasekaran~ Goel & Allemang; Rey; Lehnert; Hunt
er; McCarthy

1. Levels of analysis

The major issue discussed in the target article was the
Jevels of analysis used in various approaches to cognitive
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science. Several of the commentaries misconstrlIed the
PTC (proper treatment of connectionism) position on this
issue, either explicitly or implicitly. The target article
focused on what the PTC account is; I will now devote
more attention to what it is not, providing a better
framework in which to respond to the commentaries.

1.1. A framework lor discussion. Suppose we are given
two computational accounts at different levels; call the
lower- or "micro"-level description ~, and the higher- or
"macro"-level description M. I" might be an assembly
language program, or the differential equations describ
ing the circuits in a von Neumann compliter, or the
differential equations describing activation passing and
connection strength modification in a connectionist net
work. M might be a Pascal program or an OPS-5 produc
tion system for solving arithmetic problems, The ques
tion is: What possible relations might hold between I" and
M? (The following discussion expands On that of Pinker &
Prince 1988).

The first possibility is the most straightf()Jward: I" is an
implementation of M. The notion of implementation is
provided primarily by the von Neumann compliter;
throughout this discussion I will take "implementation"
to mean exactly what it means in that context. I For my
own purposes, the crucial aspect of the implementation
relation is this. Suppose we have a physical system S
which at some level of description LfL is performing
exactly the computation 1": that is, if we write down the
laws governing the dynamics and interactions of those
aspects of the system state that are characteristic oflevel
L(, we find these processes to be exactly described by 1".
I ~ is an implementation of M, we are guaranteed the
following: The states of this same system S have charac
teristics at a higher level LM which evolve and interact
exactly according to M: These characteristics define a
description of S at the higher level LM for which M is a
complete, formal, and precise account of the system's
computation.

If I" implements M, then this constitutes the strongest
possible sense in which I" and M could both be valid
descriptions of the same system S. If we take I" to be a
connectionist account and M a symbolic account, then
assuming that ~ is an implementation of M is the view of
connectionism I will call implementationaltst. The imple
mentationalist view is rejected by PTC. This rejection is
stated in (8c); the wording of (8c) is designed precisely to
reflect the characterization of the implementation rela
tion given in the preceding paragraph.

If ~ is not an implementation of M., another obvious
possible relation between ~ and M is that there is no
systematic relation between them. If S is a system that is
described at level LI' by 1", then there is no description at
any level of S that bears any significant similarity to M,
except possibly for isolated accidental coincidences. In
this case~ M can have no role to play in explaining the
behavinr of S. 2

If ~ is a connectionist account and M is a symbolic
account, this relation corresponds to the eliminativist
position: Connectionist accounts eliminate symbolic ones
from cognitive science. Like the implementationalist
position, the eliminativist position is also rejected by
PTe.

Table 2 presents the implementationalist and elim-
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Table 2. A spectrum of positions OIl connectionism's relation to the symbolic approach

Position

Neural

Eliminativist

Connectionist
Limitivist
(PTC) Revisionist Implcmentationalist

Conceptual-level
laws/symbolic
processes

Subconceptual-Ievel
laws/connection
ist processes

folklore

nonexistent

folklore

exactly correct for
entire cognitive
system

approximately
corrcct

exactly corrcct for
entire cognitive
system

exactly correct, af
ter revision

exactly correct (for
conncctioldst
part of cognitive
system)

exact Iy correct

exactly correct (but
irrelevant fOr cog
nitive architec
ture)

inativist positions, along with a nUlllber ofother relevant
positions on the relation between connectionist and sym
bolic accounts. All positions in Table 2 assume some
degree of validity of the connectionist approach; they
differ in their assessment of the validity of the symbolic
approach and the relation between the two approaches.
As Table 2 indicates, and as I will shortly discuss, PTC
adopts a view in some sense intermediate between the
far-left eliminativist and far-right implementationalist
views. The intermediacy of the PTC position allows us to
understand an interesting phenomenon that occurred in
the ,commentaries. Commentators leaning toward one or
the other of the extrenle views correctly saw in PTC a
rejection of their view. Their response was to conclude
that YrC embraced the other extreme, and to direct at
PTC their favorite attacks on tlle opposite extreme. Thus
we see why Touretzky - whose connectionist models
(e.g., Touretzky 1986; Touretzky & Hinton 1985) proba
bly COnle closest to realizing tlle implenlentationalist
strategy - identifies the contribution of the target article
as «defin[i.ng] tlle eliminative stance" at the same time
that Hanson calls PTC a" 'strong implementationai' view
ofconnectionism. " Implicitly> the logic in these commen
taries stems from the following assumption:

(EF) The Extremist Fallacy: There exist only two viable
views on the connectionist/symbolic relation: elllll
inativism and implementationalism. Any approach that
clearly rejects one view must either embrace the other
or be incoherent.

Some commentators, seeing correctly that PTC rejects
both extreme positions, followed (EF) to the conclusion
that YrC is incoherent (e.g., Antouy & Levine and
Dietrich & Fields).

It therefore becomes crucial to establish that (EF) is
indeed a fallacy; that tllere is a coherent perspective that
rejects both extremes. The target article is, of course,
intended to argue for just this conclusion. The article
summarizes a program· of researCh carried out in tlle
intermediate perspective to illustrate that the framework
is viable, that it can lead to interesting research, and that
it has the potential to account for more aspects of cogni
tion than either extreme view can handle separately.

Another argument is more hinted at than formally
presented: An argument by analogy with physics, in
which the intermediate position ofYrC is likened to the
relation between the microphysics ofthe quantum tlleory
ofmatter and the macrophysics of Newtonian mechanics.

60 BEHAVIORAL AND BRAIN SCIENCES (1988) 1U

Note that tlle point ofthe analogy is to show by illustration
that an intermediate view like that of PTC cannot be
simply dismissed as intrinsically iucoherent, as in (E F).

The micro/ macrophysics analogy was not construed
uniformly by the commentators in the way it was
intended, so let me expand upon it here. Some readers
may have taken the comparison to Newtonian physics as
deprecatory - quite the opposite of tlle intended read
ing. Newtonian mechanics was chosen as a case where a
macrotheory is scientifically rock-solid, and explanatorily
essential, despite the fact that it is known to be not
literally instantiated in tlle world, according to the CUr
rent best theory, the microtheory. As Stich points out,
the fundamental elmnents in the. ontology presumed by
the macrophysics cannot literally exist according to the
ontology ofmicrophysics (rigid bodies, deterministic v:;U
ues for observables, Galilean invariance of physical
laws). In a strictly literal sense, if the microtlleory is
right, the macrotheory is wrong,3 it is III this quite
nontrivial sense that I describe the micro- and mac
rotlleories as "incompatible" (contrary to Cleland,
Dietrich & Fields, and Van Gulick). It does not however
follow that the macrotheory is explanatorily irrelevant:
In the world of real explanations, Newtonian explana
tions are at least as important as quantum ones (within
their proper domain). The position on explanation that
PTC relies on goes som,etl,ing like this:

(AE) The Principle of Approximate Explanation:
Suppose it is a logical consequence of a microtheory
that, within a certain range of circumstances, C. laws
of a macrotheory are valid to a certain tkgree of
approximation. Then the microtheory licenses ap
proximate explanations via the macrotheoty for phe
nomena occurring in c. In very special cases, these
phenomena may admit' more exact explanations that
rest directly on the laws of the microtheory (without
invoking the macrotheory), but this is not to b" ex
pected generically: For most phenomena in C. the
only available explanation will be the (approximate)
one provitkd by the macrotheory.4
This principle illustrates a third relation that can exist

between a microaccount f.L and a .macroaccount M: M
approximately describes the higher level behavior of S,
not accidentally but because there are systematic, ex
planatorily relevant relationships between the computa
tions performed by fL and M. That the relationships
betw~en f.L and M are "systematic" manifests itself in



rinciple (AE) through the proof (or less rigorous logical
rgoment) that, given that the laws IJ. hold at the micro
it"l, it follows that the laws of M hold at the macrolevel.
(lIS call this relationship hetween IJ. and M refinement:
sa refinement of M.

Refinement, not implementation, is the relation be
tween micro- and macrophysics. Figuratively speaking,
':ptograms",written in Newtonian physics that depend on
~Hietdeterminism or absolute simultaneity will not "run"
porrectly in a world of quantal uncertainties and Ein
steinian relativities. If quantum theory were an imple
m:~ntation of Newtonian mechanics, it would be guaran
\\"'d that any phenomenon describable in the Newtonian
vocabulary would be governed exactly by Newtonian
laws; quantum theory would be needed only for micro
events not describable at the higher level of Newtonian
'theory. It is just such a guarantee that ensures that a
program written in COMMON LISP will provide an exact
higher level description of any computer running that
program on top ofa genuine implementation ofCOMMON

LISP.
It is useful to be ~ bit more concrete about one sense in

which the macrotheory approximates the microtheOly. In
physics, the passage from the microtheory to the mac
rotheory is a certain limit in which various parameters of
the system being described approach extreme values.
(For example, Newtonian mechanics correspond to a
limit of relativistic quantum tbeory in which, loosely
speaking, masses of bodies approach infinity and speeds
approach zero.) Thus, the mathematical analysis of the
emergence of the macrotheory from the microtheory
involves taking limits in which certain idealizations be
come valid. In the cognitive case, there are many limits
involved in the passage from subsymbolic models to
symbolic models. Among these limits are: TI18 number of
connectionist units or the strength of connection ap
proaches infinity (allowing "soft" properties to become
"hard," and allowing memory capacity limits to he ide
alized away for "competence" theory), the relaxation or
learning time approaches infinity (allowing, e.g., stoch
astic inference or learning to converge to theoretically
known limits), and the overlap (inner product) of vectors
stored in memory approaches zero (orthogonality: elim
inating interference of items in memory).

Since the formal relationship between the micro- and
macrolevels presumed here is One of convergence in the
limit, the PTC position in Table 2 has been called 'lim
itivist." This name is also appropriate in that the micro
theory explicitly limits the applicability ofthe macrotheo
ry to certain circumstances C, and specifies the limits of
its accuracy in C.

Having discllssed the main points of Table 2, let us
consider each of the positions outlined in the table, from
tbe extreme left to the extreme right.

There are two kinds of eliminitivists: The furthest left
position maintains that the science of cognition will re
quire accounts at tbe neural level, and that higher level"
whether they be those of the symbolic or subsymbolic
paradigm, Can furnish no more than folklore. The only
SCientifically valid cognitive models are real neural mod
els. Slightly less to the left is the position that Connec
tionist models offer scientifically valid accounts, even if
they are at some level higher than the neural level, but
accounts at levels higher than that ofconnectionist nodes

Response/Smolensky: Proper treatment of connectionism

and links, including symbolic models, have no scientific
standing.

Left of center is the position taken by PTC, that
accounts at the neural, subconceptual, and conceptual
levels can all provide scientific explanations. The concep
tual level offers explanations tbat are scientifically valid
provided that it is taken into consideration that they are
approximate and restricted; the range of cognitive phe
nomena modeled by the subconceptual accounts, and the
exactness of those models, is much greater. In this view,
symbolic methods cannot provide complete, formal, and
precise accounts of intuitive processing (8c), but this
leaves a number of important roles for symbolic accounts
(briefly mentioned in the target article follOwing 8c):
a) describing consciously mediated (nonintuitive) pro
cesses - including many of the phenomena so important
to philosophers, such as conscious reasoning; b) describ
ing isolated aspects (i.e., not complete accounts) of per
formance; c) giving general (as opposed to detailed and
formal) ways of understanding and thinking about cog
nitive processes; d) describing intuitive competences:
abstractions away from performance (i. e., not precise),
e. g., in language processing (contrary to Rey, the validity
of competence theories is consistent with PrC).

Right of center is the revisionist position, which sees as
a primary function of connectionist theory the revising of
symbolic theory; after such revision, this view has it,
symbolic theory will provide a complete, formal, and
precise account ofcognition at the macrolevel. A favorite
way to imagine the revisionist scenario playing out is to
modify symbolic theory by relegating certain processes to
connectionist networks: e.g. perception, memory, pro
duction matching, and other "low level" operations. The
image that emerges is that the mind is a symbolic comput
ing engine with handy connectionist peripherals to which
it can farm out certain low-level chores tllat connectionist
nets happen to have a talent for. Since, as we all know, the
left half of tbe brain does hard, rational symbol-like
processing while the right half does soft, squishy, con
nectionist-like processing,5 this version of the revisionist
story sees the mind as a house divided, right and left
working side by side despite their profound differences.
Daniel Andler (personal communication) and I call this
arrangement by its French name, cohabitation. (Wood
field & Morton call this "division of labor.")

A subtler, but vaguer, revisionist view anticipates a
revision of the way the basic machinery of symbolic
computation is used in cognitive models, based on the
way symbolic operations are actually realized in the
connectionist substrate (Pinker & Prince 1988). I am not
aware ofany suggestions for how this might be carried out
in practice.

One difference between a PTC and revisionist view
can be illustrated through the Com mentary of Lloyd: he
clearly places priority on higher, conceptual-level ac
counts of cognition; he resists PTC's move to give the
oretical parity (or even priority) to the lower, subconcep
tuallevel; and he looks to connectionism primarily as a
way of developing new and better formal accounts at the
conceptual level. Viewed through PTC's Newto
nian/quantum analogy, Lloyd's view becomes: "What
we really want out of physics is the study of macroscopic,
everyday, rigid bodies; quantum mechanics should be
used primarily to provide us Vvith better theories of such
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bodies, and not to shift our attention to lower levels that
are not properly the study of physics. "

The final, far-right view is the implementationalist
view already discussed.

TI,e target article stated that PTC rejects "blandly
ecumenical" views; this term was intended to cover both
the cohabitation version of revisionism and implementa
tionalism. The sense in which these views are bland is
that they involve no reconstruction of the core of the
cognitive architecture presumed by the symbolic ap
proach; they simply involve realizing low-level opera
tions in connectionist terms. In the cohabitation ap
proach, selected low-level processes in the architecture
get done with connectionist networks, giving a higher
level performance that is potentially different from the
symbolic components they replace (e.g., the new memo
ry is content-addressable whereas the old was not). In the
implementationalist approach, connectionist networks
pmform the primitive operations needed to support all of
symbol processing but they do it in such a way that,
viewed from the higher level, the computations are the
same as they were before.

By contrast, the PTC approacll requires a complete
reconstruction of the cognitive architecture. It does not
recycle the symbolic core, adding connectionist pe
ripherals or providing connectionist implementations of
all the LISP primitives. PTC is "incompatible" with the
symbolic approach because it does involve reconstructing
the cognitive architecture. PTC is self-consciously ec
umenical - but not blandly so.

To appreciate this point, it is helpful to draw out the
methodological import of the distinction between the
PTC and blandly ecumenical views. Consider a core
cognitive function, say, language comprehensiou. Given
the three views, cohabitation, implementatiollal, and
PTC, what is the job of the COlUlectionist researcher? A
researcher of the cohabitation school takes a symbolic
program for language comprehension and asks, «How can
I rewrite this program to make use of a connectionist
memory and connectionist best-match routine?" An inI
plementationalist asks, «What are the primitive symbolic
operations into which this program compiles, and how
can I build connectionist nets to implement them?" TIle
PTC approach spawns several questions: "Which aspects
of human performance are being captured by this pro
gram, and which are being missed? ''''hat are the com
putational abstractions being used in the program that
aUow it to capture what it captures? What are natural
ways of instantiating those abstractions in connectionist
computation? Are there ways to use connectionist com
putation to model the aspects ofllUman pmfonnance that
the symbolic program is missing?"

These differences between the methodological im
plications of the implementationalist and PTC views are
illustrated in Figure 1. At the top level are information
processing abstractions such as memory, constituent
structures, attention, and so forth. At the next level are
the particular formal instantiations of these abstractions
that appear in symbolic cognitive science. Below these on
the right branch are connectionist implementations of
these symbolic computational elements. TIl is is the i01
plementationalist branch. On the left branch, the high
level abstractions have been instantiated directly in their
natural PTC-connectionist form, without passing through
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Figure 1. TIle methodological implications of limitavist (left
branch) vs. implcmcntationalist (right branch) vicws of con
nectionism.

the symbolic formalism. But because these PTC-connec
tionist instantiations are reifYing the same kinds of ab
stractions, and because the symbolic formalism does
capture important aspects of human cognition, there is a
relation between the connectionist instantiations on the
left branch and the symbolic instantiations on the right
branch: TIle former are a reflnementofthe latter, i.e., the
symbolic fonnalism is an approximate higher level de
scription of the PTC-connectionist formalism (as opposed
to an exact higher level description of the implementa
tionalist-connectionistformalism on the right). Again, the
main point is this: TIle right, implementationalist, branch
preserves the symbolic cognitive architecture, whereas
the left, PTC branch requires a recffilstruction of the
cognitive architecture in which the basic computational
abstractions acquire new, nonequivalent, instantiations.
This view of the relation between connectionism and
cognitive architecture has much ill common with that of
Fodor and Pylyshyn (1988), but our assessments differ.

As the last two paragraphs show, there are important
methodological implications that depend on whether
connectionist models literally implement sYlubolic mod
els, or whether the two kinds of models merely instanti
ate comnwn underlying principles. Thus it is importilllt to
ask (with Van Gulick), "at what level will we find powel1iJl
insightful cognitive generalizations" - but it is also impor
tant to ask (contrary to Van Gulick) "at what level
plete precise formal cognitive d~scriptions are to
found," for it is this question that determines
brancll of Figure 1 we are to follow.

Chandrasekaran, Goel & Allemang are right to
phasize the importallce of "information processing
stractions"; these are the elements at the top level
Figure 1. But it is also necessary to emphasize
importance ofthe particular shape these abstractions
when tlley are fOffilalized in a particuJar framework.

1.2. Commentaries compatible with PTC. Having
PTC explicitly in the context of alternative views
connectionism, I now proceed to direct replies to
mentary, starting with those consistent with the
view.

Hofstadter's commentary illustrates his view of
ceptual-level interactions, a view that seems to cry out

instantiation of concepts as something ~~'~~~:m:~~'~:;~~
akin to patterns of activity: patterns that
dependent forms, overlap with a rich topology,
support subtle conceptual-level interactions that c",~, 5~
from" simpler interactions between the elements of



,rich internal structure of these concepts. The fluid con
ceptual interactions of common sense demanded by

fstadter are, on the PTC account, huilt into the very
ric of the architecture: They are not add-ons to an
erwise brittle system. Hofstadter's view is not only

1")' close to PTC, it is one of PTC's chief sources. Many
the elements ofPTC have rather direct counterparts in
e writings ofHofstadter: subsymbols (Hofstadter 1985,

.• 662), the subconceptual-level hypothesis (Hofstadter
85), the relation hetween conceptual, subconceptual,

lfud neural models (Hofstadter 1979, p. 569-73), symhols
and context dependence (Hofstadter 1979, 349-50), and
even computational temperature (Hofstadter 1983).'
VVhile Hofstadter has articulated these principles, and
argued extensively for them, he has incorporated them
!!lto research limited to the conceptual level; the meth
qdological conclusion that PTC draws is, of course, quite
different.

DeDarosa's commentary raises the issue of whether
connectionist processing should be viewed as "associa
tion" Or "inference." «Associationism" is also raised - but
as an ominous accusation - by Lindsay. The view favored
in the target article, and pushed even further by Golden,
is that the basic processing in connectionist networks is
statistical inference, which sits somewhere intermediate
betwee-n the notions of "pure association" and logical
jnference. Since "pure association" is an undefined, in
fOrmal notion, it is difficult to say in which respects the
processes underlying the most powerful connectionist
models go beyond pure association. But the kind of
statistical inference underlying the harmony model of
circuit reasoning, discussed in Section 9.2 of the target
article, seems more powerful than "mere" association in
its ability, in the appropriate limit, to give rise to a
competence that is correctly characterized through log
ical inference. It is probably best to say that just as
predicate calculus is Aristotle's notion of inference
dressed up and gone to college, so the statistical inference
of connectionist networks is Humean association with a
Master's degree.

Rueckl makes the important point that softened con
ceptual-level formalisms such as fuzzy logic can be used to
formalize subsymbolic models at the conceptual level,
but they will in general fail because they do not capture
enough of the internal structure of concepts to be able to
account for the causal interactions of those concepts. I
might add a technical note: Rueckl is right in stating that
it's not possible to predict much if all that's known is the
degree to which a pattern is present, but much more can
be predicted if instead what's kno)"n is the degree to
which a pattern overlaps a complete set ofpatterns. This
is in fact the basis of the conceptual-level analysis of
Smolensky ~1986b), which is summarized in Section 9.3 of
the target article.

Most of Dyer's comments seem to be consistent with
the PTC position, and I have nothing substantial to
dispute in, or add to, his observations.

1.3. Misunderstandings of the PTe position. The frame
work presented above allows us to clear up confusions
about the PTC position present in a number ofcommen
taries.

Both the EDITORIAL COMMENTARY and Quartan's take
my use of "symbolic" and "subsymbolic" to refer to
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levels. In fact, these terms refer to paradigms for cog
nitive modeling, not levels. The editor is right to question
whether "subsymbolic" refers to a lower level than "sym
bolic": It does not. The symbolic and subsymbolic para
digm, as defined in the target article, are approaches to
cognitive modeling that use, respectively, symboBc and
subsymbolic models, each of which can be analyzed at
various levels of analysis. As Table 2 (target article)
illustrates, the symbolic/subsymbolic distinction is
orthogonal to the distinction between the conceptual and
subconceptual level. These are semantic levels: They
refer to mappings between formal models and what they
represent. On the side of what is represented, the con
ceptuallevel is populated by consciously accessible con
cepts, whereas the subconceptual level is comprised of
fine-grained entities beneath the level of conscious con
cepts. For connectionist models the conceptual level
consists of patterns of activity over many units and their
interactions; the subconcepfual level consists of indi
vidual units and their interconnections. For symbolic
models, the conceptual level consists of symbols and the
operations that manipulate them, and lower levels (no
one of which has the distinction of being singled out as
"the subconceptual level") consist of the finer grained
operations on which symbol manipulation is built.

In other words, the level distinctions involve levels of
aggregation, what the EDITORIAL COMMENTARY calls the
"molar/molecular or macro/microlevels of description,"
just as in the case of macro/microphysics, the basic
analogy that was provided for understanding the
intended sense of "levels." (Lakoff further distinguishes
this use of "levels' from a related but different usage in
linguistics.)

As in Table 2 (target article), Quarton's two-dimension
al array of models illustrates the orthogonality oflevels of
description and models being described. His commen
tary is quite helpful, and usefully distinguishes "simula
tion relevant" and «simulation irrelevant" lower levels.
Quarton unfortunately ignores, however, the crucial fact
that different levels can be related in ways other than
implementation; his picture handles levels in computer
systems but cannot really accommodate the relevant
relationship for PTC: the sense in which macrophysics is a
higher level description of microphysics. What is needed
is a vertical relation other than implementation, or, if
models related by other than implementation are to be
separated horizontally, an analysis ofhorizon tal relations.

Some commentators found the thrust of the target
article inconsistent with their interpretation of descrip
tive tenus such as "incompatible:' "inconsistent," and
"blandly ecumenical." Rather than letting their under
standing ofthe gist ofthe article guide them to interpreta
tions of these unimportant terms that would lead to an
overall consistent reading of the article, they prefered to
stick with some a priori favorite characterization of these
terms and get confused by imagined inconsistency.

For example, Dietrich & Fields seem to have grasped
entirely the intent of PTC's limitivist position, yet be
cause they did not see this position as representing
"incompatibility" between connectionist and symbolic
accounts, they preferred to see inconsistency. As ex
plained above, there is a perfectly reasonable sense in
which Newtonian mechanics and quantum theory are
"incompatible"; in fact, this sense of incompatibility is
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sufficient to lead Stich to conclude that the microtheory
can eliminate the scientific standing of the macrotheory.

Dietrich & Fields pursue their misconstrual of "incom
patibility" to the conclusion that PTC must be committed
to the lack of a consistent mapping between patterns of
activity and concepts - for otherwise there would in
principle be a "complete, formal, and precise" PTC
account at the mnceptual level. Here they ignore the
word tractable in (8c). That such conceptual-level ac
counts exist in principle is not the issue; the question is
whether such accounts exist in sufficiently tractable form
to serve the scientific needs of building models, making
predictions, and proViding explanations. (Besides, that
the pattern-of-activity-to-<...'Oncept ll1apping is imprecise is
exactly the content of Section 7.2.)

Dietrich & Fields's claim tl,at models can be given any
semantic interpretation at any level seems to indicate that
they have in mind a profoundly different sense of "level"
from that used in tlle target article. In claiming that one
can interpret neurons as representing grandmothers they
appear to be blurring the distinction between mapping a
single neuron's state onto a representation of grand
mother and mapping collective states of a population of
neurons onto such a representation. If we replace "neu
ron" by "node in a subsymbolic connectionist network,"
then this distinction is precisely that between giving a
semantic interpretation at the subconceptuallevel and at
the conceptual level. Lakoff spells this out quite clearly.

Touretzky asserts that the PTC position on his bounc
ing thermostat is the eliminativist one (iv); in fact, the
PTC position would be to develop equations correctly
accounting for the bounCing, and to derive mathe
matically the result that the higher level rule is approx
imately satisfied. It should be possible in fact to derive the
limits of this approxi.mation: The amount of time after
crossing the setpoint that "performance noise" will ob
scure the thermostat's "real competence," and conditions
under which the competence will fail to appear at all (e. g.,
subjecting the thermostat to rapid temperature oscilla
tions that prevent it from equilibrating).

As stated earlier, several implementationalist-Ieaning
commentators mistook PTC for eliminativist; in addition
to Touretzky, these include Rey ("connectionism ought
in the end to replace ...") and Schneider ("... para
digm shift laying waste its predecessors").

Bechtel is worried about how the connectionist con
scious rule processor can do its job without actually being
implemented, and thus violating (8c). But (&) only refers
to the intuitive processor, so this problem is a simple
misunderstanding. Indeed Section 6 of the target article
is devoted to implementing the conscious rule interpret
er in connectionist networks.

1.4. Arguments against PTC's relation to the symbolic
approach. Several commentators argue for positions in
Table 2 other than the PTC position.

Dyer and Touretzky emphasize the importance of
symbolic processes (e.g., variable binding) in performing
complex information processing; the PTC view is in
agreement: It is necessary "to extend the connectionist
framework to naturally incorporate, without losing the
virtues of connectionist computation, the ingredients
essential to the power of symbolic computation" (Smol-
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ensky 1987, p. 1). Although arguments like those ofDLer
and Touretzky, emphasizing the importance of symbolic
L'Omputation, are often viewed as arguments in favor of
implementationalist or revisionist views of connec
tionism, tlley are really arguments against the elim
inative view; they are therefore quite compatible with the
PTC view. It must be realized, however, that since a PTC
view, following the left branch of Figure 1, insists on
reinstantiating the basic ideas behind symbolic computa
tion in a fully connectionist fashion and not merely
implementing the standard instantiations of those ideas,
we will not know for some time yet whether the PTC
approach can adequately marshal the power behind sym
bolic computation.

The commentators who seem to advocate revisionist
positions include Chandrasekaran et al. (<<Connectionist
architectures seem to be especially good in providing
some basic functions .... Symbolic cognitive theories
can take advantage of the availability of connectionist
realization of these functions"), Schneider ("it would be
better to identifY tlle weaknesses and strengths of each
and exanline hybrid architectures"), and, most explicitly,
Uoyd.

Stich argues for an eliminativist position, preferring to
view symbolic theory as an analog ofcaloric theory rather
than of Newtonian mecllanics. The moral he wants to
draw from his analogy is that the microtheory (kinetic
theory) eliminated the macrotheory from science. This is
a strange moral to draw, however: There is no more
spectacular (and classic) example in science of a micro
theory that vindicated and refined - rather than elimi
nated - a macrotheory than that of kinetic theory (shitis
tical mechanics) arid thermodynamics. Whatever may
have been the fate of the particular stuff called "caloric
fluid," the scientific standing of macrotheory in this area
is not in doubt. It is the view that successfulluicrotlwories
always eliminate macrotheories from science that I re
ferred to in the conclusion of the target article as «na
ive ... eliminative reductionism," and Stich is right that
the PTC view rejects the elilninative conclusion. (Wood~
field & Morton correctly emphasize that one cannot be
both "emergentist" - the PTC position - and elim
inativist about symbolic processing.) Stich is quite right to
point out tlmt in the traditional paradignl symbols are
relied - have a hard and stable existence - to an extent
that is not likely to emerge from connectionist networks.
But it seems to be typical that when a macrotheory is
reduced to a microtheory, what was seen before as a
reified, hard, and stable substance (e.g., calmic fluid,
rigid bodies) is now viewed as a much more abstract entity
emerging from the interaction oflower level entities that

.are (for the time being) viewed as the reified and stable
substrate. It is not surprising that symbols and symbol
manipulation should suffer the same fate.

Woodfield & Morton propose that the relation of
symbolic to connectionist accounts may be different from
all tllOse induded in Table 2: a relation analogous to that
between entering into a contract and signing one's BaIne.
I am unable to see how this intriguing proposal might
work The causal powers of contracts are instantiated in
the world through cognitive systems that recognize
name-signing and act upon that recognition accordingly.
How can the causal powers of symbols be instantiated



ogously, without some system that recognizes rele
t subsymbolic activity and acts upon that recognition?
'is that exactly what is being proposed?

Chandrasekaran et al. propose to characterize the
vels issue in terms of Marr's (1982) computational/
orithmic/implementational analysis, and want to say

the symholic/connectionist debate is clouded by
IWkir,g at implementationallevels instead of computa-

or algorithmic levels. [See also Anderson: "Meth
:~d()lo!~ie~ for Studying Human Knowledge" BBS 10(3)

The target article emphasizes the importance of
at the higher level properties of connectionist

stems, and this is one respect in which the PTC ap- .
rQach differs from much connectionist research that is

PGused more exclusively on the lower level. Hannony
th<f::Ory, for example, can be accommodated in the Marr
framework quite well: There are two rather clearly identi
fiable theoretical accounts at what can be called the
tXlmputational and algorithmic levels; simulating a har
ipony model brings in an implementation level as w~n

(Smolensky 1986a). Chandrasekaran et al. are right to
point out how understanding a model at the higher levels
greatly promotes the understanding of what is "really
doing the work" in the model, and avoids confusion over
irrelevant details. The Marr framework is useful for
better understanding an individual computational
model, whether it is symbolic or connectionist. Marr's
framework concerns relations between levels within a
single model; it will not do, however, for the between
model relation that PTC posits hetween symholic and
connectionist models - unless the framework is expanded
to permit algorithmic-level accounts that only approx
imately instantiate a computational account. But here
again, the Marr view of levels is hest suited for level
relations that are found in machines (Marr's example is an
adding machine); if approximation/refinement is crucial,
as it is for PTC, why not replace machine-based level
analogies hy one tI,at does full justice to the notion of re
finement, like the microphysics/macrophysics analogy?

Antony & Levine want to deny PTC its place On the
spectrum ofTahle 2 by arguing for what amounts to the
Extremist Fallacy, which they state in their concluding
paragraph. Their argument is that either connectionism
denies that symholic entities (e.g., constituent-struc
tured data and structure-sensitive operations) have ex
planatory roles - eliminativism - or connectionism ad
mits that these entities have explanatory roles, and
therefore that connectionist models implement symbolic
entities. This implicitly denies the Principle of Approxi
mate Explanation on which PTC rests. Section 7.2 is an
attempt to show briefly not that constituent structure can
be «read onto" connectionist networks, as Antony &
Levine state, hut that constituentstruchlre has an i'tnpor
tant role to play in explanations (albeit approximate ones)
of the high-level behavior ofconnectionist systems. Sec
tion 7.2 is quite explicit about this: «The approximate
equivalence of the 'coffee vectors' across contexts plays a
functional role in subsymbolic processing that is quite
close to the role played by the exact equivalence of the
coffee tokens across different contexts in a symbolic
Processing system." Antony and Levine offer no re
sPonse, and their argument relies critically on refuting or
ignoring this crucial point.
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1.5. The neural level. The pursuit of increased coupling
hetween the neural and subsymholic modeling is advo
cated by Lloyd, Mortensen, Rueckl, and, to a lesser
extent, Bechtel. My intent here is really not to argue
against such a pursuit, but rather to be clear ahout the
current gap between neural and subsymboHc models, to
recognize the independently valid role tllat each has to
play in cognitive science, to admit that each has its own
set of commi.tments and goals, and to be open to any ofa
number ofoutcomes. It may happen thatthe gap hetween
the two kinds ofmodels win close; but there are reasons to
believe (see footnote 7 and preceding discussion in the
target article) that in fact the opposite is now occurring. It
may be that Lloyd's golden age picture will come to pass,
orit may he (as argued by Stone, see Section 2 below) that
instead of one level between the neural and concephlal
levels we will need many.

Den Uyl makes the important point that Table 1 (target
article) is hased on typical current connectionist models
that consist of a single module; if future models involve
multiple modules, some of the '-'s in the table will
change to '+'s. Tahle 1 is deliberately chosen to reflect
the current state of the art, and will need to be kept up to
date. The real question is whether the modular structure
of future connectionist models makes contact with the
modular stmcture of the hrain, or whether the models'
architecture will be driven by computational considera
tions that turn out not to be deeply tied to the neural
architecture.

2. Treatment of connectionist mOdels

Several commentaries address perceived inadequacies in
the target article's treatment of connectionist models;
except where noted below, I am basically in agreement
with the commentators.

Touretzky argues that connectionist models ofcomplex
processes will have to introduce persistent internal state,
modular structure, and built in mechanisms for complex
operations such as variable binding. Den Uyl convincing
ly elahorates the call for modular structure. Both com
mentators argue that the kind of mathematics that has so
far contributed nearly all the technical insights ofconnec
tionism, the continuous mathematics of dynamical sys
tems, will not continue to play this central role as connec
tionist models increase their structure and complexity.
This conclusion may be correct, but it seems reasonable
to adopt the working hypothesis that the mathematics
descrihing current connectionist networks, if these are to
he the modules offuture systems, will have to contribute
significantly to the analysis of the whole, even if other
kinds of mathematics also come into play.

Schneider argues that getting symbolic processing
done in a connectionist network requires specially crafted
networks, and that specially designed attentional mecha
nisms are needed.

Golden wishes to elevate subsymbolic principles of
rationality, based on statistical inference, to the defining
characteristic of tile suhsymbolic paradigm. Whereas I
accept the centrality of statistical inference to the para
digm, and its role in characterizing rationality, it seems
too restrictive to exclude other computational processes
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in dynamical systems (e. g., motor control) which have yet
to be shown to fit in a statistical inference framework.
Given the extent to which Golden has been able to extend
the statistical inference analysis of harmony theory and
the Boltzmann machine, it may tnm out that all of
subsymbolic processing will eventually be seen to fall
within the boundaries of statistical inference.

Stone's elegant commentary makes the following point:
If the target article succeeds in legitimating the hypoth
esis ofone level intermediate between the conceptual and
neural levels, and in characterizing its relations to levels
above and below, why not repeat the argument to legiti
mate numerous levels, determined pragmatically and
perhaps domain-specifically in response to demands for
explanations of various cognitive regularities? Put diJl'er
ently, the "subconceptual level" hypothesized by the
target article can be viewed as containing a number of
sublevels, all lying between the conceptual and neural,
all characterized by connectionist processing, lower level
accounts being refinements of higher level ones. Sorting
out this fine structure can be expected to be a domain
specific enterprise.

Lalmff points out that if subsymbolic models do not
remain in their current isolated status but are somehow
tied down to neural systems in the body, then the
semantics of patterns of activity are not free for the
theorist to invent: They are automatically grounded by
the organism. This seemS an important philosophical
point, but one that cannot really do any modeling work
until the gap is bridged (at least partly) between the
subconceptual and neural levels - unless Lakoffs re
search program is successful: the grounding of sllbsym
bolic models in the image schemas ofcognitive semantics,
which stand proxy for body-grounded neural pattenlS.
That subsymbolic models need neural grounding is also a
theme of Mortensen,

Belew points out that because ofthe difference in form
between the knowledge in individual connectionist net
works and knowledge in science, the connectionist ap
proach confronts a scientific barrier that the symbolic
approach does not. Put differently, in its purest form the
symbolic paradigm assumes that knowledge in an expert's
head is a scientific theory of the domain (Dreyfus &
Dreyfus, in press); discovering the form of an individual
expert's knowledge' and scientifically investigating the
domain are almost the same activity. This is clearly not
the case in the subsymbolic paradigm - unless we are
prepared for a radically new definition of "scientifically
investigating the domain.» Belew goes on to point out
that the connectionist approach places more weight on
the· dynamic properties ofcognitive systems than on their
static structural properties. A clear and simple example of
this important point is the case ofmemory retrieval: In a
traditional symbolic architecture, whether or not an item
will be successfully retrieved depends on the static struc
tural property ofits location in memory; in aconnectionist
network, successful retrieval depends on whether the
extended process of activation flow will settle into the
desired pattern of activity.

Freeman points out that connectionist models have
focused too heavily on dynamical systems with simple
static equilibria, and paid too little attention to dynamical
systems with much more complex global behavior. Al
though this is undoubtedly true, it is changing, with
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Freeman's work on chaotic equilibria and Jordan's (1986)
on periodic equilibria (where "equilibria" really means
"attractors"). As for the flamboyantly eliminativist asser
tions ending his commentary, I think Freeman would be
much harder pressed to live with the consequences ofthis
neuromacho talk if he were building connectionist mod
els oflanguage processing rather than models ofolfactory
pattern recognition in rabbits.

Dreyfus & Dreyfus emphasize tllat because the sub
symbols of PTC are' not necessarily context-free micro
features, the PTC picture deviates in important ways
from some "language of thought" accounts. TIns issue is
discussed in the target article in Section 7. 2, but Dreyfus
& Dreyfus are right to emphasize that the distributed
subconceptual representations that networks develop for
themselves on their hidden units tend to be much less
context-li'ee tl,.n the example of Section 7.2 would
indicate.

Lycan rejects the definition of conceptual and subcon
ceptuaJ levels given in the article, and so it is not surpris
ing that he has trouble making sense of the hypotheses
tl,.t refer to these levels. Nonetheless, his substantive
comments seem by and large to support the PTC view.
He points ont that the "complete, fonnal, and precise"
cognitive account that PTC assumes to exist at the sub
conceptual level is an account at a semantically in
terpretable level _. however, the interpretation is in
terms of subconceptual features such as "roundness pre
ceded by frontalness and followed by backness." TIle
Dreyfus & Dreyfus point just discussed entails that the
typical subconceptual feature will be much more context
dependent and obscure than this, making semantic in
terpretation at the subconceptual level a messy business.
But, as Lycan points out, the cleaner semantic interpreta
tions residing at the conceptual level come with much
more difficult computational properties. For a complex
subsymbolic system, the lower level offers clean pro
cesses but messy interpretations, while the upper level
offers the reverse. TIle clean way to go is to do semantic
interpretation at the upper level and "syntax" - process
ing - at the lower level. TIle clean semantics is carried by
symbols that float on the clean syntax of the subsymbols.

3. Treatment of symbolic models

It is clear that a number of the commentators were
looking in the target article for arguments that a connec
tionist formalism is in principle superior to a symbolic
fonnalism. TIlese people were particularly disappointed
with my treatment of the "symbolic paradigm" and were
quick to point out that arguments against the symbolic
paradigm as I characterized it are not arguments against

·symbolic computation more generally construed (e.g.,
Chandrasekaran et aI., Lycan, Prince & Pinker, Rey,
Van Gulick).

There is a good reason why I did not try to set tlle
discussion in terms of symbolic vs. connectionist for
malisms, each broadly construed. I am convinced that
such a discussion is, at least at this point, fruitless. As was
spelled out in the target article in Section 2.4, symholic
computation broaclly construed can be used to implement
connectionist computation, broadly construed, which in
turn can be used to implement a Turing machine, and so
all of symbolic computation.



'I'ltus, fur a meaningful discussion of the relation be
tw~en connectionist and symbolic models, something
less than the broadest construals of the approaches must

put on the table. For each of the approaches, I
tilled a single, coherent approach to cognitive model
that has a significant number of practitioners and
ntific interest. I coined ,a term, "subsymbolic," for the
nectionist approach, but did not have the correspond-

9/l. furesight to coin a term for the symbollc approach,
. stead giving it the generic name "the symbolic para

." Expllcit, repeated disclaimers did not suffice to
the deliberately restricted nature ofwhat I called

symbolic paradigm."
is not the role of commentators to redefine the

gt,)ur,ds fur debate, as Prince & Pinker, for example,
explicitly attempt to do. The target article is not an
analysis of the relation between connectionist and lin
guistic theories and it explicitly does not claim to be. That
j~theground on which Prince & Pinker and several other
pqrnmentators want to take their stand; unfortunately, it
is not the ground of this treabnent.

Many commentators pointed out that conceptnal vs.
~ybconceptuallevels and symbolic vs. connectionist com
pytation are independent dimensions; that symbolic
q'Qmputation does not commit one to working at the
conceptual level (e.g., Chandrasekaran et al., Lindsay,
Lycan, Prince & Pinker, Rey, Van Gulick). This inde
pendence is explicitly acknowledged, and even empha
sized, in the target article. In (4) and (8), the indepen
qcnce is manifest in distinguishing the "semantic" from
the "syntactic" (processing) assumptions of the two para
~igms being defined. I insisted in Section 2.4 that unless
the syntactic assumptions are supplemented (read: "inde
pendent assumption added") by semantic ones, the dis
Gussion immediately degenerates to the trivial mutual
implementability that a few paragraphs ago was cited as
the reason for avoiding the most general characterization
of the two approaches.

That semantic levels and types of computational pro
cesses are independent is again indicated by the two
dimensional format of Table 2 (target article). Since the
syntactic and semantic assumptions are independent,
there is a two-by-two space of modeling approaches, on
which the "semantic axis" is the semantic level at which
the model's processing is defined (conceptual or subcon
ceptual) and on which the other "syntactic axis" is the
type of computation used (symbolic or connectionist).
The "symbolic paradigm" occupies the concep
tual/symbolic corner, and the "subsymbolic paradigm"
occupies the opposite, subconceptuaJIconnectionist cor
ner. The other two corners did not figure prominently in
the target article. One is the conceptual!connectionist
approach: lo,cal connectionism, mentioned in passing as
(9). The other is the subconceptual/symbolic approach
typified by much linguistics-based theory, and explicitly
excluded from the scope of the target article.

The subconceptual/symbolic approach is difficult to
address because it is the least constrained of all. The
symbols manipulated can represent arbitrarily fine
grained features, and the operations perfurmed can be
arbitrarily complex symbol manipulations. Certainly
such an unconstrained approach cannot be lacking in
power relative to any ofthe others, since in a sense all the
others are special cases ofit. For example, as discllssed in
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Section 2.4, a LISP program simulating a subsymbolic
model is not a model of the symbolic paradigm in the
sense of(4) but it certainly is a model ofthis most general
symbollc approach.

Why would a theorist willingly forgo a framework that
is completely unconstrained for one that is much more
constrained? Theorists do this all the time, when they are
committed to a working hypothesis; they believe that the
constraints willingly accepted will serve to guide them to
valid accounts. The jury won't be in on the connectionist
constraints for some time. But it certainly isn't valid to
argue against the subsymbolic approach solely on the
ground that it is more constrained. The theme "symbolic
computation (most broadly construed) can do whatever
connectionism can do" is a triviality. (Nelson seems to be
making such a point, though I am honestly not sure.) The
point is that by accepting the constraints they do, connec
tionists have been led to interesting learning and process
ing principles that could in principle have been, but in
practice were not, discovered by theorists who did not
willingly accept the constraints that connectionism
imposes.

Although many commentators wanted to quickly dis
miss the (conscious) conceptual level as irrelevant to
characterizing the symbolic approach, there is a strong
tradition ofcognitive modeling and philosophical analysis
that fits squarely within the symbolic paradigm as defined
in (4). For example, models of skill acquisition (e.g.,
Anderson 1983) in terms ofinternallzation oftaught rules,
followed by rule compilation and chunking, start with
taught rules that must rely on consciously accessible
concepts, and then manipulate these rules in ways that
never go below the conscious level toward the concep
tual. [See Anderson: "Methodologies for studying
Human Knowledge" BBS 10(3) 1987.] Philosophical ar
guments from the structure of mental states, like those
championed by Fodor and Pylyshyn (1988) and presented
in the commentary ofRey, apply at, and only at, the level
of conscious thoughts. Chomsky has made it fashionable
to deny the relevance of conscious access, but these
arguments cannot snrvive without it. [See Chomsky:
"Rules and Representations" BBS 3(1) 1980.]

4. Adequacy of connectionism in practice

There are a lot of people out there who are deeply
annoyed by the outlandish claims being made in Some
quarters about the accomplishments and power of con
nectionism. This impatience is due in no small part to
having listened to such claims about symbolic AI for the
past 30 years. I am one of these annoyed people, and the
target article contains no claims about the power of
connectionism, which is, at this point, essentially com
pletely unknown. The statements in (1) were explicitly
labeled as my personal beliefs, not as claims, included
only in the hope ofincreasing the clarity ofthe paper. Just
the same, anumber of commentators took this oppor
tunity to address perceived inadequacies in the power of
connectionist models.

It seems that Prince & Pinker do not accept my right to
define the grounds of my analysis to exclude linguistic
based models; they go on to accuse me of conflating a
number of issues. I am perfectly aware that symbolic
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computation can incorporate subconceptual features,
parallel processing, and (as they might have added) soft
constraints. nonmonotonic logic, and fuzzy sets. TIIe
irrelevance of all this for the present treatment of the
target article has jnst been spelled ont in the preceding
paragraphs.

In reference to my remarks comparing inference with
soft and hard constraints (Section 8), Prince & Pinker
make the elementary point that adding a llew rule to a
system can radically change the "ecology of the gram
mar," and that rule interaction creates a kind of context
dependellce. My poillt was simply that hard constraints
can be used one at a time to make inferences, whereas soft
constraints cannot. Given p and p-7 q. we can conclude q
with certainty, without giving any consideration to what
ever other rules may be in the system. By contrast. ifwe
know that node i is active. and that there is a positive
connection from i to j. we can't conclude anything about
the activity of node j nntil we know what all the other
connections and activities are. This difference has impor
tant implications for penorming inferences with hard and
soft constraints, and is true despite the obvious fact that
the total set ofinferences nsing hard rules depends on the
total set of rules.

Prince & Pinker go Oil to ellumerate what they take to
be several problems for connectionist systems. The first is
that an «entity is nothing but its features"; they base this
on the Rnmelliart and McClelland (1986) model of past
tense acquisition. But it has been emphasized ill the
connectionist approach for some time (e.g., Hinton
1981), that it is in general important to have "micro
features" that serve to hold arbitrary patterns providing
names for elltities: TIlere is nothing intrinsic to the
connectionist approach that forbids, ror example, the
pattern representing a verb stem from consisting in part
in a pattern encoding the phonological form and in part a
pattern that serves as a unique identifier for that stem
(e.g.. to distingnish homonyms). In fact, arguments snch
as those in the commentary of Dreyfus & Dreyfns imply
that such microfeatures are to be expected among those
invented by networks in their hidden units.

Next, Prince & Pinker accuse me of «bait-and-switch"
because subsymbols are supposed to be more fille
grained or abstract than symbols, yet I call Wick
elfeatures. which combille features of an entity with
features of its context, "subsymbols." It is hard to see
any duplicity or contradict'ion here. since in Section 7.2 I
am quite explicit about the appearance of context in
subsymbols. There is nothing about fine-grainedness
that is inconsistent with context-sensitive suhsymbols.

Prince & Pinker are qnite right that subsYlllbols ade
quate for connectionist processing are difficult to discover
and not identical with the snbconceptnal featnres of
symbolic theOly. That is why the snbconceptnallevel of
the subsymbolic paradigm is anew one. distinct from that
of fine-grained features in symbolic theory. And that is
why there is so much interest in connectionist learning
systems that discover their own subsymbols; the neces
sary technology for this was discovered after the develop
ment of the model on which Prince & Pinker base their
entire critique.

Prince & Pinker are concerned that connectionist
networks may blend competing potential ontpnts and
thereby create nOllsense. Again, this is a real problem,
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and one for which solutions exist. (For example. see the
discussion of phase transitions in Smolensky 1986a.)

Prince & Pinker are also concerned about selectively
ignoriug similarity. They say that because there is behav
ior that looks all-or-none, only mechanisms that are all-or
none can do the job. Of course, the whole point of the
snbsymbolic approach is to explain how symbolic pro
cesses (e.g., all-or-none processes) can emerge from pro
cesses that are soft and statistical. But it does not provide
any explanation to say that the reason there are all-or
none behaviors (sometimes) is that there are all-or-none
processes.

The rest of Prince & Pinker's commentary seems to
follow the same pattern: Here's something X that's easy
for a sYlllbolic model; X is hard for a connectionist model;
look at the Rumelliart and McClelland model's first stab
at trying to do X; that isn't good enough; therefore
connectionist models call't possibly do X - in fact. "con
nectionist models that are restricted to associations
among subsymbols are demollstrably inadequate.» In
every case, it is true that connectionist models don't yet
do X well enough, that research is under way on how to do
X hetter, and that the state of the art is already several
years beyond what Prince & Pinker critique. The conclu
sion that connectionist models are "demonstrably inade
quate.» 011 the basis of the investigation ofa single model
representative of the previous generation of connec
tionist technology, seems grossly premature. As I state in
no uncertain terms in (1), it currently seems quite un
knowable whether connectionist models can adequately
solve the problems they face.

The commentary of Freidin seems to be a rerun
Chomsky's greatest hits. That old favorite, the poverty
the stimulus, is a purely intuitive argument with no
fonnal backing in the absence of hypothesized mecha
nisms to test it. Fans of the argument must be delighted
to see that cOllnectionism is working its way to a position
where the argument can be put to a new formal test.
Freidin reminds us of the familiar point that a crucial
aspect of the learnability of language is the learnability
the abstractions to which linguistic regularities are sen
sitive - or functionally equivalent abstractions. It will
then no doubt be canse for satisfaction that a main activiity
ofconnectionist research is the study ofthe learnability
abstractions. The problem of distingnishing ungram
matical sentences from novel grammatical sentences is
course a special case of tlIe problem of inductive gener
alization, and not at all special to language. This problem,
too, figures centrally in connectionist research; every
typical connectionist learning system that has ever been
built has, with greater or lesser success. solved this
problem. The standard learning paradigm is to choose a
set of target patterns to be learned (the "grammatical
sentences"). to train tlIe network on a subset of these
patterlls (no ungrammatical sentences presented!), and
finally to test whether the trained network generalizes
correctly to distinguish the unseen target patterns from
the nontargets, i.e., to distinguish «novel grammatical
sentences" from "nongrammatical sentences." Success of
course depends 011 the regularities' that distinguish the
"grammatical" and "ungrammatical" cases, and the rep
resentativeness of the traiIliIlg set.

Freidin takes the traditional point of view that a con
nectionist model, PARSNIP, that successfully learns to



bolic Al to which Lehnert belongs prefers to regard such
theorems as irrelevant.

Point (b) is not argued, simply asserted. It does not
seem correct, but for the sake ofargument, [will accept
it. With a formalism as undeveloped as connectionism,
anyone who thinks the approach will get very far without
considerable attention to methodological problems is, I
think, quite naive about the mahlrity required of a for
malism to be adequate for cognitive modeling. Symbolic
computation was developed through decades of meth
odology-driven research, and researchers who now want
to apply it can afford the luxury offocusing exclusively on
problem domains. The connectionist community as a
whole cannot afford that luxury at this time. Some of us
have to worry aborrt the methodological problems, and
we each apply the tools from which we think we can get
the most mileage. Mine happen to be tools from physics.

I do not understand why Lehnert thinks I believe
representational issues are not' central to connectionism.
I am unaware of any paper that devotes more attention
than the target article to foundational questions of con
nectionist representation. As for technical attention to
connectionist representation: "For most ... aspects of
connectionist modeling, there exists considerable formal
literature analyzing the problem and offering solutions.
There is one glaring exception: the representation com
ponent. This is a crucial component, for a poor represen
tation will often doom the model to failnre, and an
excessively generous representation may essentially
solve the problem in advance. Representation is particu
larly critical to understanding the relation between con
nectionist and symbolic computation, for the representa
tion often embodies most of the relation between a
symbolically characterized problem (e.g. a linguistic task)
and a connectionist solution." This quote is from Smol
ensky (1987, p. 1), which sels out a general mathematical
framework for analyzing the problem of connectionist
representation, and defines and analyzes a general tech
nique for representing stntctured data, such as lists and
trees. This paper's results are presented, unfortunately
for Lehnert, as theorems, but the work should leave little
doubt about the importance I attach to issues of connec
tionist representation.

First it is claimed by Hunler that my definition of
connectionism is too broad; he next says that my claims
"are perhaps best taken to refer" to a very narrowly (and
self-inconsistently)6 defined set of networks; he then
proceeds in the brrlk of the commentary to argue that
these networks are much too narrow to constitute a
general framework for cognition. My claims would in fact,
seem best taken to refer to exactly tl,e systems I defined
them to refer to, and not to the small set Hunter consid
ers. Whatever weaknesses the target article may have,
extreme narrowness of the framework is not among them.

The comments of McCarthy about unary fixation and
lack of "elaboration tolerance" seem to be on target. At
this point, connectionist models tend to be developed
with the barest minimum of representational power for
the target task. If the task is beefed up even a little, the
model has to be scrapped. This is a sign of the immaturity
of connectionist representations; it is hard enough to get
one that is barely adequate - the possibility ofdoing more
is not usually entertained.

It would be a mistake to leave the impression that
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I performance on grammaticality judgments,
'tlearn "grammar" (because Chomsky has patented
erm to apply to somethirig else). What is a bit

z~ling is tbat less than a half dozen paragrapbs earlier,
Freidin claims that when it comes to building a connec
tionist model of linguistic performance, "there is no
reason to believe tbat sucb a model will succeed."

Before leaving Freidin's commentary an obvious com
ment about innateness is required. A symbolic view of
language acquisition currently popular in the conceptual
neighborhood ofCambridge, Mass., involves an innately
J~cified parametrized set of grammars together with an
fupirical hypothesis-testing phase of parameter adjust
ent. There is no a priori connectionist or even PIC view
how the learning oflanguage is to be divided between
nate and acquired knowledge. In a very literal sense,

connectionist learning network is an innately spec
parametrized set of possible knowledge configura
together with an empirical hypothesis-testing phase

iiflJar,amet,,, adjustment. The difference is that instead of
discrete parameters embedded in complex sym

rules, the innate endowment is a lot of continuous
embedded in simple numerical "rules."

is no obvious way in which the abstractions enter
ing in the symbolic innate rules can be embedded in the
innate structure of a connectionist network, but it- is far
too early to tell whether there is a nonobvious way that
something equivalent can - and should - be done.

In a related vein, Shepard argues that the connec
tionist approach has systematically neglected an essential
qllestion: How does adaptation on an evolutionary time
scale configure networks so that they are innately able to
learn what they must learn? I believe that Shepard is
right, both in characterizing this as a lack and in empha
sizing its importance. The neglect is probably a result of
the lack of any technical handle on the problem; this is
obviously a fertile ground for someone with the right set
of tools. (Chandrasekaran et al. raise the same issue of
grappling with the prior commitments embedded in
network architectures.)

Can patterns of activity, Rey wonders, be used to
create mental states with the properties he demands in
his (1)-(4)? I believe that the approach laid out in Smol
ensky (1987), which constructs and analyzes fully dis
tributed structured representations composed of slIbpat
terns in appropriate ways, can get close enough to do the
necessary work. (Indeed it was exactly considerations
such as Rey's (1)-(4), impressed upon me by Rey, Fodor,
and Pylyshyn [personal communication], that motivated
this research.)

The commentary of Lehnert makes the following
points:

(a) Psychologists are attracted to connectionism be
cause of theorem envy.

(b) Connectionism is methodology-driven research
and that's dangerous.

(c) The methodology driving Smolensky is physics.
(d) Smolensky wants to ignore representational

issues.
The presupposition of (a) is false: The symbolic ap

proach offers many more theorems, both in absolute
numbers and in current rate of production, than the
connectionist approach (see any issue of the journal Ar
tificial Intelligence); it happens that the school of sym-
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connectionist models cannot represent relations higher
than unary. One technique involves binding arguments
of a relation to the slots in the relation. Research on this
problem includes Hinton's (1981) work on semantic net
works, McClelland and Kawamoto's (1986) work on se
mantic role assignment, Dertbick's (1986; 1987) connec
tionist implementation of a micro-KL-ONE, Touretzky
and Hinton's (1985) connectionist implementation of a
simple production system, and my work (Smolensky
1987) on tbe representation of symbolic structures. In
much of this work, the key is to use microfeatures that
denote the conjunction ofa microfeature ofthe slot and a
microfeature of the argument filling that slot: Greater
than-unary relations are achieved by using greater-than
unary microfeatures. For greater-than-unary analysis of
rooms, the network would need to be trained not on
patterns describing single rooms in isolation, but patterns
describing configurations of rooms, with the necessary
interrelations included in the descriptions.

As to the proper connectionist treatment ofan English
speaker pronouncing Chinese names, the analysis im
plicitly proposed in tlle target article is the following:
Rules about bow to pronounce Cbinese Q and X are
elltered into the (connectionist-implemented) conscious
rule interpreter as S-knowledge (Section 6.3); resident in
the intuitive processor are the NETtalk-like connections
constituting P-knowledge of English pronunciation.
When tbe Englisb speaker is reading English text, the
computation is done in parallel in the intuitive processor.
When a Chinese name comes along, the intuitive pro
cessor fails to settle quickly on a pronunciation because of
the non-English-like letter sequences,; in particular, se
quences starting with Q or X are likely to be quite
unpronounceable, as fur as this P-knowledge is concerned.
Because the intuitive processor has failed to settle qUickly
on a pronunciation, the rule interpreter has a chance to
carry out the rather slow process of firing its rules for
pronouncing Q and X. With some practice, the intuitive
processor starts to tune its weights to handle these new
cases; the S-knowledge is slowly and indirectly "com
piled" into P-knowledge.

This account makes a number of predictions about
performance: Pronunciation of Q- and X-names will (ini
tially) be accompanied by conscious awareness ofthe use
of the rules, can be interfered with by other conscious
processes, and will have ,an identifiably different time
course; many more mistakes would be made if, instead of
Q and X, letters were used that are pronounceable in
English in a larger variety of contexts (e.g., if T and K
were pronounced D and G), and so forth.

Note that the proper treatment of this task does not
irlVolve instantaneously adjusting the connections in the
NETtalk-like intuitive processor to incorporate the pro
nunciation ofQ and X; tllese connections are established
only slowly through practice. But at instruction time, it is
necessary to change instantly many connections in tlle
conscious rule interpreter in order to store the new rules.
How this might be done is the subject ofcurrent research,
but note tlmt it is only the special-purpose conscious rule
interpreter, built on the language processor, that needs
to perform one-trial learning; specialized intuitive mod
ules do not need this capability. 11,e basic idea for how
the language processor can handle one-trial learning is
this: The ability to understand a language requires a
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network that has many "virtual hannony maxima" at
states corresponding to the well-formed sentences and
their meanings (what I call "virtual memOlies"); when a
well-formed sentence is heard, even once, the prior
tuning of the network to the language enables the net
work to turn the "virtual harmony maximum" corre
sponding to tllat sentence into a real harmony maximum:
a stored memory. Whether this proposal can actually be
carried out is unknown at this time.
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NOTES
1. Some commentators use "implementation" loosely, ap

parently equating it with a weaker notion such as instantiation
(e.g., Rey and Van Gulick). In the present eontext, it is advis·
able to use terms for various relations between levels with
precision; all statements about the subsymbolic approach not
being "merely implementational" refer to this specific sense of
"implenlentation, »

2. The case of accidental coincidences is what Woodfield &
Morton call "killing two birds with one stone."

3. Note that just the reverse is tme of implementations:
There, according to the microaccount, the ontology of the
macroaccount must exist, since it can be logically and exactly
detived from the microaccount. If the microtheory is right, the
macrotheory must be right.

4. That the macrotheory has explanatory priority for most
phenomena in C seems to be behind the comments of Cleland,
Woodfield & Morton, and Prince & Pinker. Given this, the
hypothesis in (10) of the target article (that the subsymbollc
account is complete) should not be constmed to refer to explana
tory completeness but rather to the sense of "completeness" in
whi~h quantum theory in pritlciple applies to all phenomena,
whereas Newtonian mechanics does not.

5. It's obvious the two sides were named by someone looking
from the wrong direction.

6. Simulated annealing is not really a training technique, and
the nlethod Hunter presumably means, Boltzmann learning,
can't really be used with feedforward networks.
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