(1) For the following questions, consider a data set that exhibits a normal distribution. Report the answers to the nearest 0.01%.

(a) How much of the data lies below the value corresponding to $Z = 1.2$? 88.49%

(b) How much of the data lies between the values corresponding to $Z = 1.2$ and $Z = 1.4$? 3.43%

(c) How much of the data lies between the values corresponding to $Z = -1.2$ and $Z = 1.4$? 80.41%

(2) For the following questions, consider a data set that exhibits a normal distribution. Report the answers to the nearest 0.01.

(a) What is the Z score for the value that is larger than 35.2% of the data? $Z = -0.38$

(b) What is the Z score for the value that is smaller than 10.2% of the data? $Z = 1.27$

(c) Consider a portion of the data bounded above and below by certain Z scores. If we consider a region bounded below by $Z = 0.4$, what is the Z score of the upper bound if the region contains 17.1% of the data? $Z = 0.94$

(3) Consider a set of 800 of normally distributed data values with a mean of 26 and a standard deviation of 4.0

(a) How many values are larger than 27.00 (report answer to the nearest integer) $# = 321$

(b) How many values are between 23.00 and 28.00? (report answer to the nearest integer) $# = 372$

(c) What is your best estimate for the value of Q_3? (report answer to the nearest 0.01) $Q_3 = 28.70$

(4) Imagine that we take a sample from a population of interest. Assume that this sample accurately reflects the mean and standard deviation of the population so you can use the normal distribution and Z scores for the problems below. (If you’ve read ahead in your book or lab manual you know we should really use t scores, don’t worry about this right now, use the Z scores)

For the following questions use the sample values to the right:

Sample data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

(a) Assuming that the population data is normally distributed, what is the value that you expect 67% of the data in the population to be smaller than? (round to nearest 0.01) Val. = 19.91

(b) What is your best estimate for the IQR of the population data? (round to nearest 0.01) IQR = 3.95