(1) For the following questions, consider a data set that exhibits a normal distribution. Report the answers to the nearest 0.01%.

(a) How much of the data lies below the value corresponding to $Z = 1.1$?
 86.43%

(b) How much of the data lies between the values corresponding
 to $Z = 1.1$ and $Z = 1.3$?
 3.89%

(c) How much of the data lies between the values corresponding
 to $Z = -1.1$ and $Z = 1.3$?
 76.75%

(2) For the following questions, consider a data set that exhibits a normal distribution. Report the answers to the nearest 0.01.

(a) What is the Z score for the value that is larger than 20.9% of the data?
 $Z = -0.81$

(b) What is the Z score for the value that is smaller than 11.9% of the data?
 $Z = 1.18$

(c) Consider a portion of the data bounded above and below by certain Z scores.
 If we consider a region bounded below by $Z = 0.4$, what is the Z score of
 the upper bound if the region contains 23.9% of the data?
 $Z = 1.25$

(3) Consider a set of 900 normally distributed data values with a mean of 24 and a standard deviation of 4.0

(a) How many values are larger than 27.00
 (report answer to the nearest integer)
 # = 204

(b) How many values are between 23.00 and 28.00?
 (report answer to the nearest integer)
 # = 396

(c) What is your best estimate for the value of Q3?
 (report answer to the nearest 0.01)
 Q3 = 26.70

(4) Imagine that we take a sample from a population of interest.
 Sample data
 Assume that this sample accurately reflects the mean and standard
 deviation of the population so you can use the normal distribution and
 Z scores for the problems below. (If you've read ahead in your book or
 lab manual you know we should really use t scores, don't worry about this right now, use the Z scores)

(a) Assuming that the population data is normally distributed, what is the value
 that you expect 67% of the data in the population to be smaller than?
 (round to nearest 0.01)
 Val. = 20.21

(b) What is your best estimate for the IQR of the population data?
 (round to nearest 0.01)
 IQR = 3.34