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of this distribution is therefore of broad interest but a general derivation from basic principles is still

lacking. Using random nucleation and growth to describe crystallization processes we derive the time
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a b s t r a c t

The logarithmic-normal (lognormal) distribution is one of the most frequently observed distributions in

nature and describes a large number of physical, biological and even sociological phenomena. The origin

development of grain-size distributions. Our derivation provides, for the first time, an analytical

expression of the size distribution in the form of a lognormal type distribution. We apply our results to

the grain-size distribution of solid phase crystallized Si-films.

& 2008 Elsevier B.V. All rights reserved.
The logarithmic-normal (lognormal) size distribution is one of
the most frequently encountered distributions in nature [1,2]. It
has been shown early on that a large number of technical
processes and even sociological phenomena such as income
distributions [2] or the productivity of researchers [3] follow a
lognormal behavior. The distribution is also frequently observed
as a result of various crystallization processes [4]; especially
random nucleation and growth (RNG) processes usually result in a
lognormal distribution of cluster or grain sizes [5]. Lognormal size
distributions in phase transformations have conventionally been
attributed to coarsening [6,7]. Our earlier work [8], however,
pointed out that such distributions might occur due to time-
dependent kinetics of nucleation and growth, without the
involvement of coarsening. Literature on nucleation describes
the initial or early stages of nucleation [9,10] and there are a
number of derivations of nucleation rates for these early stages,
see e.g. Ref. [11]. A general description of the evolution of size
distributions is e.g. given in Ref. [12] for aerosols and an overview
on the development of size distributions in crystallization
processes can be found in Ref. [13]. Furthermore, there are
ll rights reserved.
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numerical approaches describing the size distributions e.g. during
condensation of vapor [14].

We provide for the first time an analytical derivation for the
evolution of lognormal size distributions. Preconditions of our
derivation are: (i) The growth starts with the formation of nuclei
of a given critical size gc, which is usually small as compared
to the typical size g of grains in the full-grown distribution.
(ii) Nuclei are formed on a random basis during simultaneous
growth of other grains, which have already grown to a larger size
g. (iii) There is no coarsening (incorporation of smaller grains into
larger ones). These conditions apply to a large number of
processes termed homogeneous RNG. For the case of hetero-
geneous nucleation, the availability of nucleation sites has to be
modified by a suitable extension of the present description. We
first introduce a differential equation that describes the under-
lying physical concepts and present solutions for physically
relevant cases. We then apply our results to the grain-size
distribution of solid phase crystallized Si-films.

We start by establishing the differential equation containing
the essential ingredients of a RNG-process. The formation of
nuclei requires a critical size gc. Therefore, we describe the
contribution of nucleation to the grain-size distribution N at
time t by

qNðg; tÞ

qt
¼ IðtÞdðg � gcÞ, (1)
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where g is the diameter of grains, IðtÞ is the time-dependent
nucleation rate and d is the Dirac delta-function. Once nuclei are
formed, the change of grain-size distribution N in time is due to
the growth of nuclei and is obtained from the continuity equation

qNðg; tÞ

qt
¼ �= � j (2)

with the particle current density j ¼ Nðg; tÞvðg; tÞ. We now assume
that the growth rate vðg; tÞ is isotropic and independent of g. Using
polar or spherical coordinates depending on whether the crystal-
lization of a thin film or a bulk material is considered, all angle
dependent terms vanish and we obtain

= � j ¼
vðtÞ

gd�1

qðgd�1Nðg; tÞÞ

qg
. (3)

This expression holds for dimensions d ¼ 1; 2 and 3.1 Introducing
Eq. (3) into the continuity equation (2) and combining Eq. (1) with
Eq. (2), one obtains the nucleation and growth equation in d

dimensions

qNðg; tÞ

qt
¼ IðtÞdðg � gcÞ �

vðtÞ

gd�1

qðgd�1Nðg; tÞÞ

qg
. (4)

Since the increase in diameter g is determined by the time-
dependent growth rate vðtÞ, the grain size for t!1 may simply
be derived from dgðtÞ ¼ vðtÞdt and results in

ginf ¼ gc þ

Z 1
0

vðtÞdt. (5)

We define the quantity ~Nðg; tÞ ¼ gd�1Nðg; tÞ in order to transform
Eq. (4) into the somewhat simpler shape

q ~Nðg; tÞ
qt

þ vðtÞ
q ~Nðg; tÞ

qg
¼ gd�1IðtÞdðg � gcÞ. (6)

In order to solve this partial differential equation, we use the well-
known Laplace transform and obtain an ordinary differential
equation that can be solved analytically. Applying the inverse
Laplace transform to the solution leads to the final result. The
calculations involved in this procedure are beyond the scope of
this contribution and will be described separately [15].

In order to obtain specific solutions of Eq. (4) one has to make a
reasonable choice for the time dependence of nucleation and
growth rates IðtÞ and vðtÞ. As RNG proceeds, nucleation is
decreasing due to the decreasing fraction of available material,
while the average growth rate decreases due to impingement of
neighbouring grains. The time-dependent fraction of material XðtÞ

crystallized during RNG-processes is frequently described by the
Avrami–Mehl–Johnson (AMJ) [11] expression

XdðtÞ ¼ 1� exp �
t � t0

tc

� �dþ1
" #( )

Y
t � t0

tc

� �
(7)

with the critical crystallization time tc, the incubation time t0

preceding crystallization, and the dimensionality of the growth
process d ¼ 2 for film growth and d ¼ 3 for bulk growth. YðtÞ is
the Heaviside function. For an experimental setup to detect the
crystallization kinetics of thin films, see e.g. Ref. [16]. The fraction
of material not crystallized at time t and thus still available for
further nucleation and growth is consequently given by

YdðtÞ ¼ 1� XdðtÞ ¼ exp �
t � t0

tc

� �dþ1
( )

Y
t � t0

tc

� �
. (8)
1 Note, that in contrast to previous work [8], the contribution from the

divergence is written in terms of the diameter g of the grain rather than its radius r.

Consequently, the growth-rate vðtÞ is twice the growth rate in Ref. [8].
In the following we will assume t0 ¼ 0, as the present paper does
not address incubation effects. Following the above discussion,
crystallization occurs through nucleation and growth processes
obeying different time dependencies. Accordingly, we introduce
two critical time constants tcI for nucleation and tcv for growth.
We also consider different, though similar, functional forms for
the nucleation rate

InðtÞ ¼ I0YI
nðtÞ ¼ I0 exp �

t

tcI

� �nþ1
" #

(9)

and the growth rate

vmðtÞ ¼ v0Yv
mðtÞ ¼ v0 exp �

t

tcv

� �mþ1
" #

, (10)

and assume man in order to account for the different processes at
work. We have found the complete analytical solution of Eq. (4)
with the above rates. Combinations of n ¼ 1;2;3 and m ¼ 1;2 lead
to a variety of functional forms that will be described elsewhere
[15]. Assuming that nucleation is limited by the available material
for crystallization, we identify n with the dimension of the growth
process, and therefore use n ¼ d. The choice of m is, on the other
hand, less obvious. Choosing m ¼ 0 results (i) in a lognormal type
distribution, and (ii) in a more accurate description of the
experimental results discussed below. The correspondence of
our theoretical result with experimental data of a specific RNG
process may allow to give an independent determination of the
appropriate value of m, and thereby of the time dependence of
the growth rate vðtÞ in the model. In general, vmðtÞ will depend on
the details of the process considered. A description of such details
(e.g. the effect of hard or soft impingement of grains) is, however,
beyond the scope of the present work.

Solving Eq. (4) with the rates given in Eqs. (9) and (10) we
obtain for the case m ¼ 0:

Nðg; tÞ ¼
I0

v0

� �
gc

g

� �d�1 1

a
exp ð�1Þn

tcv

tcI
ln a

� �nþ1
" #

� Y
g � gc

tcvv0

� �
�Y

g � gmaxðtÞ

tcvv0

� �� �
(11)

with

a ¼
g � gc

tcvv0
þ e�t=tcv (12)

and the maximal grain size given by Eq. (5)

gmaxðtÞ ¼ gc þ tcvv0ð1� e�t=tcv Þ. (13)

Eq. (11) is a remarkable result in that it displays a mathematical
structure close to the lognormal distribution, a fact not previously
recognized in the literature. This is seen more clearly when
considering the final distribution obtained once the nucleation
and growth processes have been completed ðt!1Þ. Indeed, we
then obtain from Eq. (11)

NðgÞ ¼
gc

g

� �d�1 I0tcv

g � gc
exp ð�1Þd

tcv

tcI
ln

g � gc

tcvv0

� �� �dþ1
" #

� Y
g � gc

tcvv0

� �
�Y

g � ginf

tcvv0

� �� �
(14)

with

ginf ¼ lim
t!1

gmaxðtÞ ¼ gc þ tcvv0. (15)
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Fig. 1. Grain size distribution (histogram) of a Si-film with a thickness of 1mm

solid-phase crystallized at 600 1C for 15 h. Fit to Eq. (16) (solid line) and to the

lognormal distribution given in Eq. (18) (dashed line) for comparison. (a)

Distribution represented on a linear size scale. (b) Distribution represented on a

double logarithmic scale.

2 The same procedure has been used for Fig. 1 of Ref. [8]. Note that this

transformation changes the shape of the distribution: while in [8] the measured

grain-size distribution with a crystallized fraction of 2.8% is indeed non-

monotonic, the calculated distribution is not. Although both distributions appear

non-monotonic on the logarithmic size scale, the calculated distribution only

becomes non-monotonic once the crystallized fraction exceeds about 16%.

Nevertheless, the validity of the concept presented in Ref. [8] is now supported

by the generic derivation given here.
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For gbgc we can further simplify the result to

N4ðgÞ ¼
I0

v0

� �
ginf

gc

� �
gc

g

� �d

exp ð�1Þd
ln

g

ginf

� �
tcI

tcv

0
BB@

1
CCA

dþ12
6664

3
7775

�Y
ginf � g

tcvv0

� �
, (16)

and

ginf ¼ v0tcv. (17)

A comparison of the above result with the lognormal distribution

LðgÞ ¼
1ffiffiffiffiffiffi

2p
p

sg
exp �

1

2

lnðg=MÞ

s

� �2
" #

(18)

with the median M and the width s shows that we obtain a size
distribution that differs from the lognormal distribution in three
respects: (a) there is an additional dimension-dependent pre-
factor 1=gd�1, (b) the exponent of the lognormal distribution also
depends on the dimensionality of the growth process and (c) the
distribution is multiplied by a cut-off function at the maximal
grain size (ginf at t!1). Note that Eq. (16) contains the ratio
ðgc=gÞd which is inversely proportional to the area or volume of
grains. Due to the differences between expressions (16) and (18),
we cannot directly identify the parameter M with ginf or tcI=tcv

with s.
Although differential equations similar to the one introduced

here have been discussed in the literature in various fields (see,
e.g. Refs. [12,13] and references therein), our solution departs from
those found elsewhere in several respects. One of them is the
presence of the cutoffs at low and high grain sizes in Eqs. (11), (14)
and (16), which directly result from our derivation and the proper
treatment of the Dirac distribution. Their appearance correctly
reproduces the physics of the RNG process. We also note that in
the case n ¼ 1, m ¼ 0 the particular form of the rates InðtÞ and
vmðtÞ exactly leads to the lognormal distribution generally
introduced empirically to fit data. To the best of our knowledge
this is the first analytical derivation of a lognormal type
distribution reported so far.

We now apply our result to experimental data obtained
from the solid phase crystallization of amorphous Si as an
example for an RNG process. The experimentally determined size
distribution is taken from Ref. [5]. The corresponding parameter
v0 ¼ 1:72� 0:34mm=h is taken from Ref. [8], which also states the
crystallization parameters t0 ¼ 1:5� 0:5 h and tc ¼ 4� 0:5 h,
necessary for Eq. (8), using d ¼ 2 for amorphous Si-films
solid phase crystallized at 600 1C. The critical grain size gc is of
the order of a few nanometers. Since a reliable experimental
value of I0 is not available but I0 and gc only appear as a product
in the size distribution, we treat the constant, grain size-
independent prefactor of Eq. (16) as a fit parameter. Note
that the use of experimental values of I0 would have to take
into account a factor related to the transformation to polar or
spherical coordinates when introduced in the solutions described
above [15].

Fig. 1 compares the grain size distribution of a fully crystallized
Si-film to our calculations above. Fig. 1(a) shows a histogram of
the distribution of an ensemble of about 900 grains. Fig. 1(b)
depicts the same set of data, however, the histogram is created
using the distribution of log10g of the individual grains. Every bar
of the original distribution of Fig. 1(a) represents a number of
NðgÞdg grains in the size interval ½g; g þ dg�. A transformation of a
distribution function NðgÞ to a log-distribution scale is written
NðgÞdg ¼ gNðln gÞd ln g. This procedure enables a better visualiza-
tion of the distribution of small and less frequently occurring
grains and is applied to the size distribution functions derived
above.2
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Fitting the lognormal distribution of Eq. (18) (dashed line) to
the experimentally observed distribution gives M ¼ 1� 0:04mm,
s ¼ 0:49� 0:03. For a fit of the experimental data to Eq. (16)
(solid line), we use d ¼ 3 and ginf ¼ 4:9mm, the largest grain
size measured in this distribution. The best fit results in
tcI=tcv ¼ 1:74� 0:02. Using, as stated above, a growth rate of
v0 ¼ 1:72� 0:34mm=h one obtains the following reasonable
values tcv ¼ 2:9� 0:6 h and tcI ¼ 5� 1 h. It should be noted that
tcv and v0 can be varied within reasonable limits as long as the
ratio tcI=tcv and ginf remain constant. A fit using d ¼ 2 was also
attempted, but the result is of inferior quality. We attribute this
finding to the fact that a large fraction of grains have a diameter
smaller than the film thickness of 1mm and growth is therefore
mainly three-dimensional. Parameters obtained from other
crystallized samples lead to comparable results. A comparison to
further experimental results including partially crystallized
samples will be presented elsewhere [15]. We stress the fact that,
contrary to the fit using the lognormal distribution equation (18)
(dashed line in Fig. 1), our fit (solid line) is based on a physical
model and theoretical derivation of Eq. (16) applied to RNG
processes.

In conclusion, we present a generic differential equation for the
time-dependent grain size distribution resulting from random
nucleation and growth (RNG) processes. We specify the nuclea-
tion and growth rates according to the well established Avrami–
Mehl–Johnson Equation, and for the first time achieve an
analytical derivation of logarithmic-normal-type distributions.
We therefore propose that the frequently observed lognormal size
distribution resulting from RNG originates from the dynamics of
the process as described here. Our comparatively simple approach
is well supported by the grain size distribution found in fully
crystallized Si-films. Our model may therefore significantly
benefit the understanding and tailoring of technically relevant
nucleation and growth processes.
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Note added in proof

Recently, we became aware of an early, rarely cited paper of
Kolmogoroff in Dokl.Akad.Nauk. SSSR 31, 99 (1941). Using a
statistical approach, the author derived the logarithmic normal
distribution for particle sizes resulting from grinding. Our forth-
coming paper [15] will discuss the relevance of this approach and
the resulting distribution of grain sizes obtained.
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