Department Chair: Kenneth James
Department Office: Engineering & Computer Sciences (ECS) 552
Phone: (562) 985-4285
Website: http://www.csulb.edu/colleges/coe/cecs
Faculty: Shaonaz Asgari, Anastasios Chassiakos, Michael Chelian, Sandra Cynar (Emerita), Wayne Dick (Emeritus), Todd Ebert, Burkhard Englert, Arthur Gittleman, Darin Goldstein, Min He, Michael Hoffman, Tom Johnson, Shui Lam, Dar-Biau Liu, Tracy Bradley Maples, Alvaro Monge, Frank Murgolo, Thinh Nguyen, Dennis Volper, Xiaolong Wu
Undergraduate Advisors: Michael Chelian, Frank Murgolo
Graduate Advisor: Tracy Maples
General Education Advising: Academic Advising - Horn Center
Minor and Certificate Advisor: Michael Chelian, Frank Murgolo
Administrative Support Coordinator: Robin Ikemi
Administrative Support Assistant: Karyl Anthony
Students desiring detailed information should contact the department for referral to one of the faculty advisors.

Career Possibilities
Computer Engineer • Software Engineer • Systems Analyst • Hand-held Appliance Programmer • Web Application Developer • Mainframe Programmer • Applications Programmer • LAN/WAN Administrator • Systems Administrator • Computer Service Representative • Database Administrator • Technical Services Manager • Telecommunications Analyst (Some of these, and other careers, require additional education or experience. For more information, see www.careers.csulb.edu.)

ABET Accreditation
The Bachelor of Science in Computer Engineering is accredited by the Engineering Accreditation Commission and the Bachelor of Science in Computer Science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

Advisory Board
The Department of Computer Engineering and Computer Science is supported by an Advisory Board composed of engineers, computer scientists, and business executives in the Southern California area. This liaison helps the department keep its curricula responsive to the needs of the community.

Undergraduate Degree Programs
The degree in Computer Engineering focuses on computer hardware (design, construction, and operation of computer systems). The Computer Science degree places more emphasis on computer software (databases and user development). The high school student planning to enter either program is advised to pursue a strong program in science and mathematics.

Students will receive a comprehensive education in computer engineering and/or computer science, as well as the sciences and humanities, and will be able to communicate effectively. They will be able to design systems, components or processes that meet performance, cost, time, safety, and quality requirements. They will understand professional responsibilities and will be able to analyze the social and ethical implications of their work.

Undergraduate Programs

Bachelor of Science in Computer Engineering (128 units)

This program provides students with a strong background in mathematics, physics, and engineering science. Courses, especially those in the junior and senior years, emphasize an open-ended, design-oriented approach to solving engineering problems. Teamwork, communication skills, and an interdisciplinary approach to problem solving are integrated into the senior computer engineering design courses.

Program Educational Objectives
After graduation and engaging in the profession of Computer Engineering for a few years, our graduates will have:

• become a part of California's high technology workforce, and made significant contributions to Computer Engineering through the research, design and development of a wide range of embedded systems and system-on-chip applications.
• helped further the state's economic growth by developing innovative ideas, and translating them into commercial products that benefit society.
• functioned effectively as team members and/or leaders in multidisciplinary and multicultural environments.
• recognized the societal and global context of their work and understood professional and ethical responsibilities.
• continued the pursuit of lifelong learning through such activities as graduate school, distance education, professional training and membership in professional societies and been able to adapt to new engineering tools.

Major Declaration
Freshmen admission to engineering majors is to a 'pre-major' status (i.e., Pre-Computer Engineering). Continuation in the major will be subject to meeting specific lower division course and GPA requirements at CSULB that indicate the student's ability to succeed and complete the major. Transfer applicants and CSULB students seeking admission into Computer Engineering must also meet similar major specific requirements. To become fully admitted into the Computer Engineering major, all prospective students (i.e., pre-majors, undeclared, major changes) must have a minimum cumulative 2.5 GPA and complete the following lower-division courses with a minimum grade of "C" prior to earning 60 units:

Core Lower-Division Major Requirements:
MATH 122 (Calculus I), MATH 123 (Calculus II), PHYS 151 (Mechanics & Heat)
Lower Division:
Requirements

Performance in the courses merits an additional semester to meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete.

First-Time Freshmen: A grade of "C" or better must be achieved in MATH 122 within one calendar year.
Transfer Students: A grade of "C" or better must be achieved in MATH 123 and PHYS 151 within one calendar year.

Degree Progress

Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete.

Take all of the following courses:

CECS 100 Critical Thinking in the Digital Information Age (3)
Prerequisite/Corequisite: ENGL 100 or its equivalent all with a grade of "C" or better.

CECS 105 Introduction to Computer Engineering and Computer Science (1)
Prerequisites: None.

CECS 174 Introduction to Programming and Problem Solving (3)
Prerequisite: CECS 100 and MATH 113 (or equivalent) all with a grade of "C" or better.

CECS 201 Computer Logic Design I (3)
Prerequisite: MATH 113 or equivalent all with a grade of "C" or better.

CECS 211 Principles of Computer Engineering I (3)
Prerequisite: MATH 122 with a grade of "C" or better.

CECS 228 Discrete Structures With Computing Applications I (3)
Prerequisites: CECS 174 and MATH 113 or equivalent all with a grade of "C" or better.

CECS 262 C for Embedded Programming (3)
Prerequisites: CECS 174 and 201 all with a grade of "C" or better.

CECS 271 Introduction to Numerical Methods (3)
Prerequisites: CECS 174 and MATH 123 all with a grade of "C" or better.

CECS 274 Object Oriented Programming and Data Structures (3)
Prerequisite: CECS 174 with a grade of "C" or better.

CECS 282 C++ for Java Programmers (3)
Prerequisite: CECS 274 with a grade of "C" or better.

ENGR 101 Intro to the Engineering Profession (1)
Prerequisite/Corequisite: MATH 111 or MATH 113 or MATH 122.

ENGR 102 Academic Success Skill (1)
Prerequisite: ENGR 101 with a grade of "C" or better.

MATH 122 Calculus I (4)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.

MATH 123 Calculus II (4)
Prerequisite: A grade of "C" or better in MATH 122.

PHYS 151 Mechanics and Heat (4)
Prerequisite/Corequisite: MATH 122.

Take one of the following choices:

PHYS 152 Electricity and Magnetism (4)
Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.

or both of the following:

EE 210 Electro-Magnetic Foundations in EE (3)
Prerequisite: PHYS 151 with a grade of "C" or better. Corequisites: MATH 123, EE 210L.

EE 210L Electro-Magnetic Foundations in EE Lab (1)

A Math Elective – Take three units of approved elective to be selected from:

MATH 224 or 247

A Science Elective – Take four units of approved elective to be selected from:

BIOL 200, PHYS 254 and 255, CHEM 111A

Upper Division:
Take all of the following courses:

CECS 301 Computer Logic Design II (3)
Prerequisites: CECS 174, 201 all with a grade of "C" or better.

CECS 311 Principles of Computer Engineering II (3)
Prerequisites: CECS 201 and CECS 211 all with a grade of "C" or better.

CECS 326 Operating Systems (3)
Prerequisites: CECS 282 and either 285 or 346 all with a grade of "C" or better.

CECS 346 Microprocessors and Controllers I (3)
Prerequisites: CECS 211 and 262 all with a grade of "C" or better.

CECS 347 Microprocessors and Controllers II (3)
Prerequisites: CECS 301, 311, and 346 all with a grade of "C" or better.

CECS 360 Integrated Circuit Design Software (3)
Prerequisites: CECS 301, 346, MATH 123 or 222 all with a grade of "C" or better.

CECS 440 Computer Architecture (3)
Prerequisites: CECS 346 with a grade of "C" or better.

CECS 447 Microprocessors and Controllers III (3)
Prerequisites: CECS 347 with a grade of "C" or better.

CECS 460 System on Chip Design (3)
Prerequisite: CECS 360 with a grade of "C" or better.

CECS 463 System on Chip Applications (3)
Prerequisite: CECS 360 with a grade of "C" or better.

CECS 490A Senior Project I (3)
Prerequisites: CECS 347 with a grade of "C" or better, senior standing.

CECS 490B Senior Project II (3)
Prerequisites: CECS 490A or 491 with a grade of "C" or better and consent of instructor.

EE 380 Probability, Statistics & Stochastic Modeling (3)
Prerequisites: MATH 123; (CECS 100 or equivalent) all with a grade of "C" or better.

Take three units of approved elective to be selected from:

CECS 343, 406, 451, 461, 474, 475, 497; EE 386, 486; CE 406; ECON 300; CEM 310 (or ENGL 317); ENGR 350; MATH 370A.

A grade of "C" or better must be achieved in all required and elective courses. BIOL 200, CHEM 111A, CE 406; CEM 310; CECS 100, 105, 174, 201, 211, 228, 262, 271, 274, 282, 301, 311, 326, 343, 346, 347, 360, 406, 440, 447, 451, 460, 461, 463, 474, 475, 490A, 490B, 497; ECON 300; EE 210 and 210L, 380, 386, 486; ENGL 317; ENGR 101, 102, 350; MATH 122, 123, 224, 247, 370A; PHYS 151, 152, 254, 255.
Bachelor of Science in Computer Science (122 units)

This degree is designed to prepare graduates for a variety of professional careers in the computer field. The curriculum is designed to provide a balance between the theoretical and practical aspects of computer science. Extensive laboratory time is required for these courses, and design and analysis experiences are emphasized.

Program Educational Objectives

Our students following graduation will be able

• to enter California's high technology workforce, and make significant contributions through the research, design and development of software and networked computer systems.
• to help further the state's economic growth by developing innovative ideas, and translating them into commercial products that benefit society.
• to function effectively as a team member and/or leader in multidisciplinary and multicultural environments.
• to recognize the societal and global context of their work and to understand professional and ethical responsibilities.
• to pursue lifelong learning through such activities as graduate school, distance education, professional training and membership in professional societies and to be able to adapt to new engineering tools.

Major Declaration

Freshmen admission to engineering majors is to a 'pre-major' status (i.e., Pre-Computer Science). Continuation in the major will be subject to meeting specific lower division course and GPA requirements at CSULB that indicate the student's ability to succeed and complete the major. Transfer applicants and CSULB students seeking admission into Computer Science must also meet similar major specific requirements. To become fully admitted into the Computer Science major, all prospective students (i.e., pre-majors, undeclared, major changes) must have a minimum cumulative 2.5 GPA and complete the following lower-division courses with a minimum grade of "C" prior to earning 60 units:

Core Lower-Division Major Requirements:
- MATH 122 (Calculus I), MATH 123 (Calculus II), PHYS 151 (Mechanics & Heat)

General Education Foundations Courses:
- Written Communication, Oral Communication, and Critical Thinking

Degree Progress

Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student’s performance in the courses merits an additional semester to complete.

First-Time Freshmen: A grade of "C" or better must be achieved in MATH 122 within one calendar year.

Transfer Students: A grade of "C" or better must be achieved in MATH 123 and PHYS 151 within one calendar year.

Requirements

Lower Division:

Take all of the following courses:
- CECS 100 Critical Thinking in the Digital Information Age (3)
 Prerequisite/Corequisite: ENGL 100 or GE Composition (Area A1).
- CECS 105 Introduction to Computer Engineering and Computer Science (1)
 Prerequisites: None.
- CECS 174 Introduction to Programming and Problem Solving (3)
 Prerequisite: CECS 100 and MATH 113 (or equivalent) all with a grade of "C" or better.
- CECS 201 Computer Logic Design I (3)
 Prerequisite: MATH 113 or equivalent all with a grade of "C" or better.
- CECS 228 Discrete Structures With Computing Applications I (3)
 Prerequisites: CECS 174 and MATH 113 or equivalent all with a grade of "C" or better.
- CECS 274 Object Oriented Programming and Data Structures (3)
 Prerequisite: CECS 174 with a grade of "C" or better.
- CECS 277 Object Oriented Application Development (3)
 Prerequisite: CECS 274 with a grade of "C" or better.
- CECS 282 C++ for Java Programmers (3)
 Prerequisite: CECS 274 with a grade of "C" or better.
- CECS 285 Computer Organization and Assembly Language Programming (3)
 Prerequisites: CECS 201, 274 all with a grade of "C" or better.
- ENGR 101 Intro to the Engineering Profession (1)
 Prerequisite/Corequisite: MATH 111 or MATH 113 or MATH 122.
- ENGR 102 Academic Success Skills (1)
 Prerequisite: ENGR 101 with a grade of "C" or better.
- MATH 122 Calculus I (4)
 Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
- MATH 123 Calculus II (4)
 Prerequisite: A grade of "C" or better in MATH 122.

Three units of math elective taken from the following:
- MATH 224 Calculus III (4)
 Prerequisite: A grade of "C" or better in MATH 123 or 222.
- MATH 233 Fundamental Concepts for Adv. Math (3)
 Prerequisite: A grade of "C" or better in MATH 123 or 222.
- MATH 247 Introduction to Linear Algebra (3)
 Prerequisite: MATH 123 or 222.

Take a minimum of 12 units of approved science-electives to include a two-semester science sequence chosen from the following groups of courses:
- PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.
- PHYS 152 Electricity and Magnetism (4)
 Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.
 or
- PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.
- EE 210 Electro-Magnetic Foundations in EE (3)
 Prerequisite: PHYS 151 with a grade of "C" or better.
 Corequisites: MATH 123, EE 210L.
A grade of "C" or better is required in the following courses:

Take three units from a capstone course to be chosen from the following:

Take three units of applied electives to be chosen from the following:

Take three units of core electives chosen from:

Take 9 units of approved electives chosen from:

Take nine units from a capstone course to be chosen from the following:

Bachelor of Science in Engineering Technology

Technology and Engineering Education Option

For requirements, see the description in the Engineering Technology Programs section of this catalog.

Minor in Computer Science

Requirements

A minimum of 21 units.

Take all of the following courses:

CECS 323 Database Fundamentals (3)
Prerequisite: CECS 228, 277 all with a grade of "C" or better.

CECS 326 Operating Systems (3)
Prerequisite: CECS 282 and either 285 or 346 all with a grade of "C" or better.

CECS 327 Net-Centric Computing (3)
Prerequisite: CECS 326 with a grade of "C" or better.

CECS 328 Data Structures and Algorithms (3)
Prerequisite: CECS 228 with a grade of "C" or better; Corequisite: CECS 277.

CECS 341 Computer Architecture and Organization (3)
Prerequisite: CECS 285 with a grade of "C" or better.

CECS 343 Introduction to Software Engineering (3)
Prerequisites: CECS 277 or 282 all with a grade of "C" or better.

EE 380 Probability, Statistics and Stochastic Modeling (3)
Prerequisite: MATH 123; (CECS 100 or equivalent) all with a grade of "C" or better.

ENGR 350 Computers, Ethics and Society (3)
Prerequisites: 3 units from GE Category A.1 (Writing) and 3 units from GE Category D (Social and Behavioral Science).

Take one course from the following:

CECS 300 Design of Dynamic Web Sites (3)

Take 9 units of approved electives chosen from:

Take three units of core electives chosen from the following:

Take three units of applied electives to be chosen from the following:

Take three units from a capstone course to be chosen from the following:

A grade of "C" or better is required in the following courses:

Biology 153, 200, 205, 207; CEM 310; CHEM 111A, 111B; CECS 100, 105, 174, 201, 228, 274, 277, 282, 285, 323, 326, 327, 328, 341, 343, 423, 490A, 491, 492; EE 210 and 210L, 380; ENGL 317; ENGR 101, 102, 350; MATH 122, 123, 222, 224, 233, 247, 380; PHYS 151, 152.

Minor in Web Technologies and Applications

Open to all majors except those seeking a B.S. Engineering Technology, Option in Technology and Engineering Education. The minor is conferred concurrently with the BS/BA degree.

This minor will provide the technical skills not included in non-technical degrees, but required for success in a highly technical world. Students will gain an understanding of the system design process and learn to acquire and evaluate information from the internet and to communicate information via the internet including ethical issues encountered. In addition, students will learn to create a robust, useable, and accessible website.

Requirements

A minimum of 18 units as specified below.

Complete the 12 core units:

CECS 300 Critical Thinking in the Digital Information Age (3)
Prerequisite/Corequisite: ENGL 100 or GE Composition (Area A1).

CECS 110 Beginning Web Design (3)
Prerequisites: None.

CECS 200 Intermediate Web Design (3)
Prerequisite: CECS 110 with a grade of "C" or better.
Prerequisite/Corequisite: CECS 100.

CECS 300 Design of Dynamic Web Sites (3)
Prerequisite: CECS 200 with a grade of "C" or better.
Minor in Computer Science Applications

This minor is not open to students majoring in Computer Science or Computer Engineering.

This minor is designed to prepare students to write small programs and to maintain and upgrade PC software and hardware as well as understand how to set up a local area network. In addition it prepares students to be able to design and implement web applications.

Requirements

Completion of 18 units.

Complete the 12 core units:
- CECS 110 Beginning Web Design (3)
 Prerequisites: None.
- CECS 174 Intro to Programming & Problem Solving (3)
 Prerequisite: CECS 100 and MATH 113 (or equivalent) all with a grade of "C" or better.
- CECS 200 Intermediate Web Design (3)
 Prerequisite: CECS 110 with a grade of "C" or better.
 Prerequisite/Co-requisite: CECS 100.
- CECS 410 Computers and Networks (3)
 Prerequisite: Course design assumes familiarity with computers.

Complete 6 units from the following list of electives:
- CECS 300, 310, 412; IS 300, 340, 343; ETEC 435.

Certificate in Web Technologies and Applications

Open to all majors except those with or seeking a B.S. Engineering Technology, Option in Technology and Engineering Education. The certificate is conferred as a post-baccalaureate certificate or concurrently with the BS/BA degree.

This certificate will prepare students to work with a variety of technologies including computers and related technologies and the proper setup and operation of equipment along with valuable troubleshooting skills. Students will gain an understanding of the system design process and learn to acquire and evaluate information from the internet and to communicate information via the internet including ethical issues. They will learn to create a robust, useable, and accessible website.

Please be aware that this program is not eligible for Financial Aid unless pursued concurrently with a degree program.

Requirements

A minimum of 24 units as specified below

Complete the 18 core units:
- CECS 100 Critical Thinking in the Digital Information Age (3)
 Prerequisite/Corequisite: ENGL 100 or GE Composition (Area A1)
- CECS 110 Beginning Web Design (3)
 Prerequisites: None.
- CECS 200 Intermediate Web Design (3)
 Prerequisite: CECS 110 with a grade of "C" or better.
 Prerequisite/Corequisite: CECS 100.
- CECS 300 Design of Dynamic Web Sites (3)
 Prerequisite: CECS 200 with a grade of "C" or better.

Complete 6 units from the following list of electives:
- ART 366; CECS 323, 410, 412, 470; ENGR 350; ETEC 435; IS 380, 445, 484; MKTG 437; PSY 327

CECS 410 Computers and Networks (3)
Prerequisite: Course design assumes familiarity with computers.

CECS 412 Intro to Computer Network Architectures (3)
Prerequisite: Familiarity with computers.

Complete 6 units from the following list of electives:
- ART 366; CECS 323, 470; ENGR 350; ETEC 435; IS 380, 445, 484; MKTG 437; PSY 327

Graduate Programs

Mission

The mission of the graduate program in Computer engineering and Computer Science at CSULB is to provide a high-quality educational experience and the technical specialization required to become successful leaders in industry. The program also prepares the students to pursue advanced degrees if they so desire. The graduate program involves advanced courses in analysis and design in computer software and hardware. The students may choose to do a thesis or take a comprehensive examination as the culmination of their program.

Program Objectives

Graduates of the MS program will:
1. have technical competency in their field of study.
2. have technical knowledge and skills needed to conduct independent and/or innovative research.
3. keep current with state of the art technologies and advancements in their area.

Master of Science in Computer Science

Admission Procedures

To be considered for admission the graduate applicant must have earned a bachelor's degree from an accredited institution, have been in good standing at the last institution attended, and have a grade point average (GPA) of at least 2.7 for the last 60 semester units (90 quarter units) attempted. The general Graduate Record Examination (GRE) is not required, but highly recommended for international students and those students with a GPA below 3.0.

Option in Computer Engineering

This option offers advanced study in the theory, analysis, design and applications of both computer hardware and software.

Prerequisites

1. A bachelor's degree in computer science, engineering, or other appropriate discipline from an accredited college or university, with a minimum grade point average (GPA) of 2.7 in the last 60 semester units or 90 quarter units attempted.
2. Students are required to have taken the following prerequisite courses (or their equivalents) in their undergraduate study or have any deficiencies removed prior to Advancement to Candidacy:
 A. One year of instruction in an object-oriented programming language.
 B. Take all of the following courses:
 CECS 301 Computer Logic Design II (3)
 Prerequisites: CECS 174, 201 all with a grade of "C" or better.
CECS 326 Operating Systems (3)
Prerequisites: CECS 282 and either 285 or 346 all with a grade of "C" or better.

CECS 343 Introduction to Software Engineering (3)
Prerequisites: CECS 277 or 282 all with a grade of "C" or better.

CECS 346 Microprocessors and Controllers I (3)
Prerequisites: CECS 211 and 262 all with a grade of "C" or better.

CECS 347 Microprocessors and Controllers II (3)
Prerequisites: CECS 301, 311, and 346 all with a grade of "C" or better.

CECS 360 Integrated Circuit Design Software (3)
Prerequisites: CECS 301, 346, MATH 123 or 222 all with a grade of "C" or better.

CECS 440 Computer Architecture (3)
Prerequisites: CECS 346 with a grade of "C" or better.

MATH 370A Applied Mathematics I (3)
Prerequisites: MATH 123. Not open to Freshmen.

3. Students must consult with the graduate program advisor prior to enrolling in any course for the program.

Requirements

Students must complete a minimum of 30 graduate and approved upper-division course units including the following:

1. At least 21 units at the graduate level of instruction;
2. 12 units of required courses consisting of:
 A. CECS 460 System on Chip Design (3)
 Prerequisite: CECS 360 with a grade of "C" or better.
 B. CECS 530 Advanced Computer Architecture I (3)
 Prerequisite: CECS 341 or 440 with a grade of "C" or better.
 C. One course from the following:
 CECS 531 Advanced Computer Architecture II (3)
 Prerequisite: CECS 530 with a grade of "C" or better.
 CECS 546 Fault Tolerant Computing Systems (3)
 Prerequisite: CECS 530 with a grade of "C" or better.
 D. One course from the following:
 CECS 526 Advanced Operating Systems (3)
 Prerequisites: CECS 228 and 326 all with a grade of "C" or better.
 CECS 528 Advanced Analysis of Algorithms (3)
 Prerequisites: CECS 328, MATH 380 or EE 380 all with a grade of "C" or better.

3. All students must complete either:
 A. Comprehensive examination, or
 B. Thesis with oral defense which requires a total of 6 units from the following (at least 4 units must be CECS 698):
 CECS 697 Directed Research (1-3)
 Prerequisite: Classified Graduate standing.
 CECS 698 Thesis or Industrial Project (3-6)
 Prerequisite: Advancement to Candidacy.

Option in Computer Science

This option offers advanced study in software development and engineering, networking, operating systems, distributed computing, artificial intelligence, security, and analysis of algorithms.

Prerequisites

1. A bachelor's degree in computer science, engineering, or other appropriate discipline from an accredited college or university, with a minimum grade point average (GPA) of 2.7 in the last 60 semester units or 90 quarter units attempted.
2. Students are required to have taken the following prerequisite courses (or their equivalents) in their undergraduate study or have any deficiencies removed prior to Advancement to Candidacy:

A. One year of instruction in an object-oriented programming language.
B. All of the following courses:
 CECS 228 Discrete Structures with Computing Applications (3)
 Prerequisites: CECS 174 and MATH 113 or equivalent all with a grade of "C" or better.
 CECS 285 Computer Organization and Assembly Language Programming (3)
 Prerequisites: CECS 201, 274 all with a grade of "C" or better.
 CECS 323 Database Fundamentals (3)
 Prerequisites: CECS 228, 277 all with a grade of "C" or better.
 CECS 326 Operating Systems (3)
 Prerequisites: CECS 282 and either 285 or 346 all with a grade of "C" or better.
 CECS 328 Data Structures and Algorithms (3)
 Prerequisite: CECS 228 with a grade of "C" or better.
 Corequisite: CECS 277.
 CECS 341 Computer Architecture and Organization (3)
 Prerequisites: CECS 285 with a grade of "C" or better.
 CECS 343 Introduction to Software Engineering (3)
 Prerequisites: CECS 277 or 282 all with a grade of "C" or better.
 EE 380 Probability, Statistics and Stochastic Modeling (3)
 [or MATH 380 (3)]
 Prerequisites: MATH 122; (CECS 100 or equivalent) with a grade of "C" or better.
C. One of the following:
 CECS 419 Theory of Computation (3)
 Prerequisite: CECS 328 with a grade of "C" or better.
 CECS 424 Organization of Programming Languages (3)
 Prerequisites: CECS 326 and 328 all with a grade of "C" or better.
 CECS 444 Compiler Construction (3)
 Prerequisites: CECS 285 and 328 with a grade of "C" or better.
 Requirements
 CECS 449 Computer Graphics (3)
 Prerequisites: MATH 247, CECS 282 and 328 all with a grade of "C" or better.
 CECS 451 Artificial Intelligence (3)
 Prerequisites: CECS 277 and 328 all with a grade of "C" or better.
 CECS 474 Computer Network Interoperability (3)
 Prerequisite: CECS 326 with a grade of "C" or better.
 CECS 478 Introduction to Computer Security (3)
 Prerequisite: CECS 323, 328, and one course selected from 472, 474, 476 all with a grade of "C" or better.

3. Students must consult with the graduate program advisor prior to enrolling in any course for the program.

Requirements

Students must complete a minimum of 30 graduate and approved upper-division course units including the following:

1. At least 21 units at the graduate level of instruction;
2. 12 units of required courses consisting of:
 A. CECS 528 Advanced Analysis of Algorithms (3)
 Prerequisites: CECS 328, MATH 380 or EE 380 all with a grade of "C" or better.
 B. One course from the following:
 CECS 526 Advanced Operating Systems (3)
 Prerequisites: CECS 282 and 326 all with a grade of "C" or better.
 CECS 530 Advanced Computer Architecture I (3)
 Prerequisite: CECS 341 or 440 with a grade of "C" or better.
C. Two courses from the following:
 CECS 521, 531, 543, 546, 572, 575

3. All students must complete either:
 A. Comprehensive examination, or
B. Project with oral presentation, which requires 3 units of CECS 697, an oral defense, and submission of a formal written report of the project to be approved by a committee of 3 faculty members that includes the supervising faculty of the project. To be eligible for the option a student must:
 a) have advanced to candidacy,
 b) have maintained a GPA of 3.3 or above in the MSCS coursework,
 c) have been nominated by a faculty member to undertake a project under that faculty member’s supervision, and
d) have had a project proposal approved by the CECS Graduate Curriculum Committee.

C. Thesis with oral defense which requires a total of 6 units. At least 3 of the units must be taken from CECS 698 and the remaining units may be taken from either CECS 697 or CECS 698. To be eligible for the option a student must:
 a) have advanced to candidacy,
 b) have maintained a GPA of 3.3 or above in the MSCS coursework,
 c) have been nominated by a faculty member to undertake a thesis under that faculty member’s supervision, and
d) have had a thesis proposal approved by the CECS Graduate Curriculum Committee.

Advancement to Candidacy for Both Options
Students applying for advancement to candidacy must:
 1. have completed all undergraduate deficiencies with grades of "C" or better;
 2. have attained an overall grade point average (GPA) of 3.0;
 3. have completed at least 12 units of required courses applicable to the degree with a GPA of at least 3.0 for the completed units;
 4. have fulfilled the Graduation Writing Assessment Requirement (GWAR);
 5. and have their plans of studies approved by the CECS department graduate advisor.

Computer Engineering and Computer Science Courses (CECS)

LOWER DIVISION

100. Critical Thinking in the Digital Information Age (3)
Prerequisite/Corequisite: ENGL 100 or GE Composition (Area A1).
Help students develop critical thinking skills using technical software. Main topics include: identifying engineering issues for investigation, developing planning and problem solving strategies, locating pertinent information and examples, critically analyzing these sources, forming and testing hypotheses, synthesizing and organizing results for effective communication, and developing transferable problem solving skills.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

105. Introduction to Computer Engineering and Computer Science (1)
Introduction to the fields of computer engineering and computer science. Current and future trends and challenges in various fields of computing. Social, ethical and economical issues related to computing technology. Exploration of career and professional development opportunities.
(Lecture 1 hour) Letter grade only (A-F).

110. Beginning Web Design (3)
Introduction to HTML and CSS using modern tools, following the W3C guidelines for coding. Web sites designed with usability and accessibility principles implemented. Overview of graphics, video, sound, JavaScript and Dreamweaver.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

174. Introduction to Programming and Problem Solving (3)
Prerequisite: CECS 100 and MATH 113 (or equivalent) all with a grade of "C" or better.
Introduction to basic concepts of computer science and fundamental techniques for solving problems using the Java programming language. Structured problem solving, object-oriented programming, programming style. Applications to numerical and non-numerical problems.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

200. Intermediate Web Design (3)
Prerequisite: CECS 110 with a grade of "C" or better.
Prerequisite/Corequisite: CECS 100. Intermediate HTML and CSS using Dreamweaver, following the W3C guidelines for coding. Web sites designed with usability and accessibility principles implemented.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

201. Computer Logic Design I (3)
Prerequisite: MATH 113 or equivalent all with a grade of "C" or better.
Basic topics in combinational and sequential switching circuits with applications to the design of digital devices. Introduction to Electronic Design Automation (EDA) tools. Laboratory projects with Field Programmable Gate Arrays (FPGA).
(Lecture 2 hours, lab 3 hours) Letter grade only (A-F).

202. The Digital Information Age (3)
Prerequisite: GE Foundation requirements.
The design and use of common-place digital information systems. Introduction to how information is digitized, secured, compressed and transmitted. Students learn how digital age impacts them and the world they live in.
(Lecture 3 hours) Letter grade only (A-F).

211. Principles of Computer Engineering I (3)
Prerequisite: MATH 122 with a grade of "C" or better.
Basic principles of analysis and design of computer-based circuits. Application of transistors, logic families, digital, devices in computer and embedded processor interfacing, importance of phasors and the complex plane. Basic DC/AC circuit fundamentals. Laboratory safety.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

228. Discrete Structures with Computing Applications (3)
Prerequisites: CECS 174 and MATH 113 or equivalent all with a grade of "C" or better.
An introduction to discrete mathematics with applications towards computing. Topics include sets, functions, logic, relations, graphs, trees, recursion, combinatorics, and mathematical reasoning.
Letter grade only (A-F). (Lecture 2 hours, laboratory/problem session 3 hours)

262. C for Embedded Programming (3)
Prerequisites: CECS 174 and 201 all with a grade of "C" or better.
Introduction to embedded system architecture, memory organization and programming using C. Interfacing with external I/O devices, Use of internal special function registers. Development tools and extended C instructions unique to embedded systems. Course will be taught using an embedded processor development board.
(Lecture 2 hours, laboratory 3 hours.) Letter grade only (A-F).
271. Introduction to Numerical Methods (3)
Prerequisites: CECS 174 and MATH 123 all with a grade of "C" or better.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

274. Object Oriented Programming and Data Structures (3)
Prerequisite: CECS 174 with a grade of "C" or better.
Disciplined methods of design, coding and testing using the Java programming language. Data abstraction, object-oriented design. Introduction to data structures (linked lists, stacks, queues and trees.) Recursion. Sorting and searching.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

277. Object Oriented Application Development (3)
Prerequisite: CECS 274 with a grade of "C" or better.
Advanced introduction to the fundamentals of computer science and software engineering methodology. Advanced programming techniques and design methodology typically used in large programming projects using the Java programming language.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

282. C++ for Java Programmers (3)
Prerequisite: CECS 274 with a grade of "C" or better.
Structured and Object Oriented Programming in C++. Common features and differences between Java and C++. Pointers, references, and memory management, stream I/O, classes, operator overloading, exception handling, STL.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

285. Computer Organization and Assembly Language Programming (3)
Prerequisites: CECS 201, 274 all with a grade of "C" or better.
Study of computer organization and assembly language programming using embedded processor based systems to solve practical problems. Laboratory projects using embedded system software development and hardware simulation tools. Hands-on projects using hardware prototyping boards.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

UPPER DIVISION

300. Design of Dynamic Web Sites (3)
Prerequisite: CECS 200 with a grade of "C" or better.
Dynamic Web design using modern tools. Creation of domains, using hosting services and content management systems. Website portability, usability and accessibility.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

301. Computer Logic Design II (3)
Prerequisites: CECS 174, 201 all with a grade of "C" or better.
Sequential logic, programmable logic design, basic Arithmetic Logic Unit (ALU) design and memory devices. Laboratory projects with Medium Scale to Very Large Scale Integration (MSI to VLSI) implementations and Computer-Aided Design (CAD).
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

310. Computer-Based Learning Resources (3)
Prerequisite: CECS 200 with a grade of "C" or better.
Explore and learn to use the many existing web-based education tools that focus on teaching technology. Evaluation of resources for age appropriateness and gender preferences. Students will develop a web-based tool to teach a technical subject of their choice. Field work required.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

311. Principles of Computer Engineering II (3)
Prerequisites: CECS 201 and CECS 211 all with a grade of "C" or better.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

312. Introduction to Distributed Operating Systems (3)
Prerequisite: CECS 174 with a grade of "C" or better.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

323. Database Fundamentals (3)
Prerequisites: CECS 228, 277 all with a grade of "C" or better.
Fundamental topics on database management. Topics include entity-relationship models, database design, data definition language, the relational model, data manipulation language, database application programming and normalization.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

326. Operating Systems (3)
Prerequisites: CECS 282 and either 285 or 346 all with a grade of "C" or better.
The structure and functions of operating systems. Interrupt handling, processes and interprocess communication, memory management, resource scheduling, information sharing and protection. Project implementation in C/C++.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

327. Net-centric Computing (3)
Prerequisite: CECS 326 with a grade of "C" or better.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

328. Data Structures and Algorithms (3)
Prerequisite: CECS 228 with a grade of "C" or better.
Corequisite: CECS 277.
A broad view of data structures and the structure-preserving operations on them. Abstract data types, algorithms, complexity. Programming projects to exemplify these concepts.

341. Computer Architecture and Organization (3)
Prerequisites: CECS 285 with a grade of "C" or better.
(Lecture 2 hours, laboratory, 3 hours) Letter grade only (A-F).

343. Introduction to Software Engineering (3)
Prerequisites: CECS 277 or 282 all with a grade of "C" or better.
Principles of software engineering, UML, modeling large software systems, requirements elicitation, object oriented analysis and design using UML, introduction to design patterns, implementation of large systems, software testing, project management, the software lifecycle. Semester long programming project.
Letter grade only (A-F). (Lecture 2 hours, lab 3 hours)

345. Fundamentals of Embedded Systems (3)
Prerequisite: CECS 202 with a grade of "C" or better.
Beginning course in embedded system design and technology.
Examines embedded systems market, their fundamental basis, key hardware and software technology drivers, critical applications and component segments. Provides up-to-date analysis of recent developments and current trends in market space. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

346. Microprocessors and Controllers I (3)
Prerequisites: CECS 211 and 262 all with a grade of "C" or better. Intro microprocessor/controller, embedded programming and design. Basic computer organization, representation of information and instruction, addressing techniques, input/output, assembly language programming. Introduction to assemblers, linkage editors and loaders. Study of the 8051. Design of microprocessor-based systems. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

347. Microprocessors and Controllers II (3)
Prerequisites: CECS 301, 311, and 346 all with a grade of "C" or better. Study of embedded processor applications and interfacing. Embedded systems design, control of external devices, embedded programming in C and assembly, A/D and D/A converters, digital signal processing, motor and LCD controllers. Laboratory implementation of embedded designs and hardware-assisted debugging. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

350. Integrated Circuit Design Software (3)
Prerequisites: CECS 301, 346, MATH 123 or 222 all with a grade of "C" or better. Introduction to Computer Aided Design tools used in the design and fabrication of integrated circuits. Discussion of the IC fabrication process, the layout and routing of basic gates, transistor level design of gates, synthesis and RTL level design, floor planning, and IC development costs. (Lecture 2 hours, lab 3 hours) Letter grade only (A-F).

401. Programming Robots – For Educators (3)
Prerequisite: Some programming experience. Learn how to inspire interest in engineering and computer science among children ages 9 through 16. Using robotic kits, gain hands-on experience in problem solving and computer programming while constructing and programming unique robot inventions. May not be used to satisfy any MSCS requirements. (Lecture 2 hours, laboratory 3 hours). Letter grade only (A-F).

405. Selected Topics in Computer Science (3)
Prerequisite: Senior standing in computer science major. Selected topics from recent advances in computer science and technology. Letter grade only (A-F). May be repeated to a maximum of 6 units with different topics. Topics announced in the Schedule of Classes. (Lecture-problems 3 hours)

406. Selected Topics in Computer Science (3)
Prerequisite: Senior standing in the computer science major. Each offering is based upon an area of computer science and technology in which recent advances have been made. Letter grade only (A-F). May be repeated to a maximum of 6 units with different topics in different semesters. Topics announced in the Schedule of Classes. (Lecture 2 hours, laboratory 3 hours)

410. Computers and Networks (3)
Prerequisite: Course design assumes familiarity with computers. Gain practical, hands-on experience in installing hardware and software on a PC. Learn what a computer network is and how it is similar to the telephone network. Learn the parts that make up a computer and a network. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

412. Introduction to Computer Network Architectures (3)
Prerequisite: Familiarity with computers
Beginning course in computer networking designed to provide a grasp of network architectures through lecture/hands-on laboratory assignments. Overview of networking concepts and design essentials. Networking media and NICs. Network communications/protocols focusing on TCP/IP. Local area networks. Networking administration. Networking problems. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

414. Introduction to Network and System Security Issues (3)
Prerequisites: CECS 174 with a grade of "C" or better. Controlling the risk of computer security: Security threats and vulnerabilities in the development and use of computer systems. Tools and controls that can reduce or block these threats. Topics in Network Security. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

419./519. Theory of Computation (3)
Prerequisite: CECS 328 with a grade of "C" or better. Finite Automata and regular expressions. Pushdown automata and context-free languages. Turing machines and computability. Computational complexity. Letter grade only (A-F). Additional projects required for CECS 519. (Lecture-problems 3 hours)

423. Database Web Applications in JEE (3)
Prerequisites: CECS 322 and 343 all with a grade of "C" or better Prerequisite/Corequisite: ENGR 350. Design and development of data-intensive web applications in Java EE. Database topics include transaction management, stored procedures, triggers, and security. Web application design and development using core JEE patterns like Front Controller, MVC, and DAO. Application of software engineering to complete a group project. Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

424. Organization of Programming Languages (3)
Prerequisite: CECS 326 and 328 all with a grade of "C" or better. Understanding the variety of programming languages and the design trade-offs between current programming language paradigms. Comparison of programming languages in their design, implementation, and run-time supports. Includes programming projects. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

428. Analysis of Algorithms (3)
Prerequisite: CECS 328 with a grade of "C" or better. Applications of standard combinatorial techniques to applied programming problems. Rigorous analysis of correctness/complexity of algorithms. Advanced graph algorithms are emphasized. Topics include shortest paths on graphs, sorting, string matching, union find problem, divide-and-conquer technique, and weighted-edge problem. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

429./529. Search Engine Technology (3)
Prerequisites: CECS 323 and 328, MATH 380 or EE 380 all with a grade of "C" or better. Models, algorithms, and evaluation of the retrieval of information from a collection of documents. Document preprocessing, indexing and searching. Retrieval evaluation. Search engines. Additional projects required for CECS 529. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

440. Computer Architecture (3)
Prerequisites: CECS 346 with a grade of "C" or better. Review of logic design. Register transfer and micro-operations. Basic computer organization. Central processor organization. Microprogram control organization. Arithmetic processor design. Arithmetic algorithms. Input-output organization. Memory organization. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

443. Software Engineering (3)
Prerequisite: CECS 326 with a grade of "C" or better. Software life cycle. Functional decomposition, data flow and object-oriented development. Reusability and portability. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).
444. Compiler Construction (3)
Prerequisite: CECS 285 and 328 all with a grade of "C" or better.
Syntax directed compiler study. Organization of a compiler and overall
design: parsing, semantic analysis, optimization and code generation.
(Lecture 3 hours, laboratory 3 hours) Letter grade only (A-F).

445. Software Design and Architecture (3)
Prerequisite: CECS 343 with a grade of "C" or better and senior standing.
In-depth look at software design, design patterns, frameworks,
architectures and middleware architectures. Component based
design including COM, Corba, and .Net. Fundamentals of software
metrics, measuring software qualities. Basics of software evolution,
reengineering, and reverse engineering. A semester long team project.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

447. Microprocessors and Controllers III (3)
Prerequisite: CECS 347 with a grade of "C" or better.
Embedded system applications and techniques. Real-time multi-tasking
systems, schedulers, kernels, and operating systems for embedded
processors. Advanced I/O technologies - CAN, 12C, Ethernet. Embedded
Internet applications. Polling vs. interrupt handling. Lab implementation
of embedded designs and hardware-assisted debugging.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

448. User Interface Design (3)
Prerequisite: CECS 343 with a grade of "C" or better or consent of
instructor.
Evaluation, design and programming of user interface systems.
Fundamentals of human cognition, system characteristics, and the
interaction between humans and systems. Usability methods and user/
task-centered design. Tools for designing and building user interfaces,
with emphasis on rapid applications development.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

449. Computer Graphics (3)
Prerequisites: MATH 247, CECS 282 and 328 all with a grade of "C" or
better.
Basic software and hardware of 2-D computer graphics. Applications.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

451. Artificial Intelligence (3)
Prerequisites: CECS 277 and 328 all with a grade of "C" or better.
Introduction to the history and implementation of artificial intelligence
agents. Topics include search, constraint satisfaction, game-playing,
logical agents, belief networks, optimal sequential decision systems.
Project implementation.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

453. Mobile Application Development (3)
Prerequisite: CECS 328 with a grade of "C" or better or consent of the
instructor.
Languages and application programming interfaces for mobile device
platforms. Development of thick and thin client applications for mobile
devices. Letter grade only (A-F). (Lecture 2 hours, Laboratory 3 hours)

455. Introduction to Game Programming (3)
Prerequisite: CECS 328 with a grade of "C" or better or consent of
instructor.
Introduction to game programming and graphics. "Slow" games. Real-
time games with no adversary. Adversarial real-time games in 2-D.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

460. System on Chip Design (3)
Prerequisite: CECS 360 with a grade of "C" or better.
Complete System on Chip (SOC) design flow from design specification
to working SOC. Creation of RTL level modules designed for reuse,
integration of Intellectual Property (IP) for RTL and physical level IP, IC
verification, creation of self-checking test benches for designs.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

461./561. Hardware/Software Co-design (3)
Prerequisite: CECS 341 or 440 all with a grade of "C" or better.
Introduction to top-down methods for hardware/software system-
on-chip co-design. Design flow – system specification, software
implementation, hardware synthesis, system design, and verification.
Process optimization with various design decisions emphasized.
Projects/case studies using system-level design methods and tools.
Additional projects required for CECS 561. (Lecture 2 hours,
laboratory 3 hours) Letter grade only (A-F).

463. System on Chip (SOC) Applications (3)
Prerequisite: CECS 360 with a grade of "C" or better.
System on Chip (SOC) design applications. Study of a variety of
signal processing SOC designs and ASIC algorithms. Class projects
emphasizing hardware/software integration with use of FPGA/PLD
devices. Design reviews, specification, team design implementation
with project planning and tracking for system level design applications.
Letter grade only (A-F). (Lecture 2 hours, laboratory 3 hours)

470. Web Programming and Accessibility (3)
Prerequisites: CECS 332 and 343 all with a grade of "C" or better.
Introduction to World-Wide Web development. Accessibility issues.
Web architecture, standards, and programming, emphasizing XML
technologies and cascading style sheets. Visual design principles and
information architecture. Client-side and server-side programming
and protocols. Development for adaptive technologies and mobile devices.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

472. Computer Network Programming (3)
Prerequisites: CECS 326 all with a grade of "C" or better.
Fundamentals of computer network programming. Client-server
programming. Concepts of computer network programming including
the RPC Procedure Call, CORBA, multicasts, and broadcasts.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

474. Computer Network Interoperability (3)
Prerequisite: CECS 326 with a grade of "C" or better.
Overview of computer network theory and practice from a systems
perspective. Topics include network infrastructure, local area network
(LAN) protocols, wide area network (WAN) protocols, switching
technologies, Internet Protocol (IP), Transmission Control Protocol
(TCP), network security, and network configuration, design, and
performance.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

475. Application Programming Using .NET (3)
Prerequisite: CECS 343 with a grade of "C" or better.
A rigorous introduction to enterprise application development utilizing
the .NET environment. Topics include GUI interface concepts,
multithreading, collections and web forms as well as application
interfaces to database, web services and networks. Intensive
individual projects as well as a team project.
Letter grade only (A-F). (Lecture 2 hours, Laboratory 3 hours)

476. System and Network Administration (3)
Prerequisites: CECS 326 with a grade of "C" or better.
Introduction to the management and administration of Unix systems
and TCP/IP networks. Managing users, local and network file systems,
electronic mail, print queues. Establishing and managing a network.
(Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

478./578. Introduction to Computer Security (3)
Prerequisite: CECS 323, 328, and one course selected from 472, 474,
476 all with a grade of "C" or better.
Controlling the risk of computer security. Security threats and
vulnerabilities in the development and use of computer systems. Tools
and controls that can reduce or block these threats. Law, privacy and
ethics.
Additional projects required for CECS 578. (Lecture 2 hours,
laboratory 3 hours) Letter grade only (A-F).
490A. Senior Project I (3)
Prerequisites: CECS 347 with a grade of "C" or better, senior standing.
A design course where the student will define a problem and
provide a report containing a complete design solution.
(Seminar 3 hours) Letter grade only (A-F).

490B. Senior Project II (3)
Prerequisites: CECS 490A or 491 all with a grade of "C" or better
and consent of instructor.
Implementation of previously completed design project from CECS
490A or CECS 491. A formal demonstration with an oral and
written presentation is required.
(Seminar 3 hours) Letter grade only (A-F).

491. Software Development Project (3)
Prerequisites: CECS 343 and ENGR 350 both with a grade "C" or
better and senior standing.
Selected topics from recent advances in applied computing.
Application of selected topics to the design and implementation of
a software system within a team setting. Techniques for project
management, documentation, and technical presentations.
Software design, implementation, and evaluation strategies.
(Seminar 3 hours) Letter grade only (A-F).

492. Computer Networking Project (3)
Prerequisites: ENGR 350 and CECS 474 both with a grade "C" or
better or consent of the instructor.
Selected topics from recent advances in computer networking.
Design, implementation, and performance analysis of enterprise
networks. Network modeling and simulation. Application of
selected topics to a semester-long team project focusing on the
design and implementation of a large-scale network system.
(Seminar 3 hours) Letter grade only (A-F).

496. Computer Science Problem Solving (1)
Prerequisites: CECS 274 with a grade of "C" or better and consent
of instructor.
Problem solving in Computer Science. Theory necessary to solve
computer science problems and the solutions to the problems.
Problems studied will involve applications of graph theory, data
structures, recursion, and algorithms.
(Lecture 1 hour) May be repeated to a maximum of 6 units
in different semesters. Letter grade only (A-F).

497. Directed Studies (1–3)
Prerequisite: Consent of instructor.
Assigned study in topics in current computer literature or
computer-related projects with a final report.
May be repeated to a maximum of 6 units with written consent of
the Department Chair.

GRADUATE LEVEL

519./419. Theory of Computation (3)
Prerequisite: CECS 328 with a grade of "C" or better.
Finite Automata and regular expressions. Pushdown automata
and context-free languages. Turing machines and computability.
Computational complexity.
Additional projects required for CECS 519. (Lecture-problems 3
hours) Letter grade only (A-F).

521./621. Database Architecture (3)
Prerequisites: CECS 328 and 323 or 421 all with a grade of "C" or
better.
Relational database design theory- a rigorous approach. Security,
recovery, transaction management, distributed databases and
query optimization.
Master's students register in CECS 521 or 621; Ph.D. students
register in CECS 621. Additional projects required for CECS 621.
(Lecture-problems 3 hours) Letter grade only (A-F).

524./624. Advanced Topics in Programming Languages (3)
Prerequisite: CECS 424 with a grade of "C" or better.
Intensive study of languages of current interest which support object-
oriented, client-server, and multimedia applications (e.g. JAVA).
Master's students register in CECS 524 or 624; Ph.D. students register
in CECS 624. Additional projects required for CECS 624. (Lecture–
problems 3 hours) Letter grade only (A-F).

526./626. Advanced Operating Systems (3)
Prerequisites: CECS 228 and 326 all with a grade of "C" or better.
Theoretical foundations of concepts applied in the design of operating
systems. Control of concurrent processes, deadlocks, mutual
exclusion, virtual memory, resource management and scheduling.
Master's students register in CECS 526 or 626; Ph.D. students register
in CECS 626. Additional projects required for CECS 626. (Lecture–
problems 3 hours) Letter grade only (A-F).

528./628. Advanced Analysis of Algorithms (3)
Prerequisites: CECS 328, MATH 380 or EE 380 all with a grade of "C"
or better.
Theoretical analysis of algorithms. Divide and conquer, dynamic
programming and greedy algorithms; basic search and traversal
techniques including search trees; sorting; matrix manipulations; NP–
completeness.
Master's students register in CECS 528 or 628; Ph.D. students register
in CECS 628. Additional projects required for CECS 628. (Lecture–
problems 3 hours) Letter grade only (A-F).

529./429. Search Engine Technology (3)
Prerequisites: CECS 323 and 328, MATH 380 or EE 380 all with a grade of "C"
or better.
Models, algorithms, and evaluation of the retrieval of information from
a collection of documents. Document preprocessing. Indexing and
searching. Retrieval evaluation. Search engines.
Additional projects required for CECS 529. (Lecture 2 hours, laboratory
3 hours) Letter grade only (A-F).

530./630. Advanced Computer Architecture I (3)
Prerequisite: CECS 341 or 440 all with a grade of "C" or better.
Fundamentals of computer architecture. Description of architecture and
description languages. Basic computer design and central processor
implementation. Memory hierarchy and input/output. Pipelining. Vector
processor, multiprocessor systems and dataflow machines.
Master's students register in CECS 530 or 630; Ph.D. students register
in CECS 630. Additional projects required for CECS 630. (Lecture–
problems 3 hours) Letter grade only (A-F).

531./631. Advanced Computer Architecture II (3)
Prerequisite: CECS 530 with a grade of "C" or better.
Advanced computer architecture with emphasis on parallel processing.
Vector processors and multiprocessor systems. Dataflow computation.
RISC/CISC. Hypercube. Parallel software. Applications in artificial
intelligence, signal/image processing, neural network and optical
computing.
Master's students register in CECS 531 or 631; Ph.D. students register
in CECS 631. Additional projects required for CECS 631. (Lecture–
problems 3 hours) Letter grade only (A-F).

532. Memory Design and Implementation (3)
Prerequisite: CECS 341 or 440 all with a grade of "C" or better.
Logic design and operation, physical design and operation,
performance characteristics, design trade-offs, energy consumption of
modern memory hierarchies, memory errors and error correction.
Letter grade only (A-F). (Lecture-problems 3 hours)

543./643. Advanced Software Engineering (3)
Prerequisite: CECS 343 or 443 all with a grade of "C" or better.
Study of software engineering as a broad, problem-solving discipline.
Includes structured programming and software project management.
Master's students register in CECS 543 or 643; Ph.D. students register
in CECS 643. Additional projects required for CECS 643. (Lecture 2
hours, laboratory 3 hours) Letter grade only (A-F).

2013/2014 CSULB Catalog • Computer Engineering and Computer Science • 309
544./644. Software Testing and Verification (3)
Prerequisite: CECS 543 with a grade of "C" or better.
Testing/verification techniques for software development including
black box, white box, incremental, top-down and bottom-up, static and
dynamic, performance, regression, thread, and stress testing. Object-
oriented software testing with a hierarchical approach. Metrics for test,
and verification will be introduced.
Master’s students register in CECS 544 or 644; Ph.D. students register
in CECS 644. Additional projects required for CECS 644. (Lecture 2
hours, laboratory 3 hours) Letter grade only (A-F).

545./645. Software Architecture (3)
Prerequisite: CECS 543 with a grade of "C" or better.
Includes architectural styles, pipes and filters, data abstraction and
object-oriented organization, event-based, implicit invocation, layered
systems, repositories, interpreters, process control, distributed
processes, domain-specific software & heterogeneous architectures.
Component-based design patterns & case studies.
Master’s students register in CECS 545 or 645; Ph.D. students register
in CECS 645. Additional projects required for CECS 645. (Lecture 2
hours, laboratory 3 hours) Letter grade only (A-F).

546./646. Fault Tolerant Computing Systems (3)
Prerequisite: CECS 530 with a grade of "C" or better.
Fault tolerant techniques are studied as tools to assure the reliability and
continuous availability of computing systems. Case studies of modern
fault tolerant systems reviewed. Software fault tolerant systems studied
as alternatives to verification and validation approaches to software
reliability.
Master’s students register in CECS 546 or 646; Ph.D. students register
in CECS 646. Additional projects required for CECS 646. (Lecture–
problems 3 hours) Letter grade only (A-F).

547./647. Software Maintenance, Reengineering and Reuse
(3)
Prerequisite: CECS 343 or equivalent with a grade of "C" or better.
Introduction to software maintenance, defect management, corrective,
adaptive and perfective maintenance. Evolution of legacy software
systems. Program comprehension techniques, reverse engineering,
restructuring, refactoring of software systems. Software re-engineering,
data reverse engineering. Software reuse. Impact analysis, regression
testing.
Master’s students register in CECS 547 or 647; Ph.D. students register
in CECS 647. Additional projects required for CECS 647. (Lecture–
problems 3 hours) Letter grade only (A-F).

549./649. Advanced Computer Graphics (3)
Prerequisite: CECS 449 with a grade of "C" or better.
Three-dimensional representations, transformations and viewing. Color
Lighting and shading. Visual realism. Topics of current interest.
Master’s students register in CECS 549 or 649; Ph.D. students register
in CECS 649. Additional projects required for CECS 649. (Lecture 2
hours, laboratory 3 hours) Letter grade only (A-F).

550./650. Pattern Recognition Using Artificial Intelligence (3)
Prerequisite: CECS 451 with a grade of "C" or better or consent of
instructor.
General concepts of pattern recognition and trainable classifiers,
decision theory, supervised learning, non-parametric techniques, rule-
based systems and neural networks.
Master’s students register in CECS 550; Ph.D. students register in CECS
650. Additional projects required for CECS 650. (Lecture-problems 2
hours, laboratory 3 hours) Not open for credit to students with credit in
CECS 750. Letter grade only (A-F).

551./651. Advanced Artificial Intelligence (3)
Prerequisite: CECS 451 with a grade of "C" or better.
Advanced concepts in artificial intelligence. Topics include knowledge
acquisition and representation, fuzzy logic, logical reasoning, multi-
sensor integration, Dempster-Shafer’s theory of evidential reasoning,
real-time expert systems and neural networks.
Master’s students register in CECS 551 or 651; Ph.D. students register
in CECS 651. Additional projects required for CECS 651.
(Lecture-problems 3 hours) Letter grade only (A-F).

552./652. Computer Simulation and Modeling (3)
Prerequisites: EE 380 (or MATH 380) and CECS 326 all with a grade of "C" or better.
Studies of general purpose and special simulation software. Model
verification including graphical models Applications in various areas.
Master’s students register in CECS 552 or 652; Ph.D. students register
in CECS 652. Additional projects required for CECS 652.
(Lecture-problems 3 hours) Letter grade only (A-F).

553./653. Machine Vision (3)
Prerequisite: Graduate standing in engineering or computer science.
Discussion and laboratory implementation of current research in
vision and image understanding. Topics include image formation,
early processing, segmentation, relational structures in 2-D and
3-D, motion, stereo, 3-D reconstruction, morphological methods and
computer architecture for machine vision.
Master’s students register in CECS 553 or 653; Ph.D. students register
in CECS 653. Additional projects required for CECS 653.
(Lecture-problems 2 hours, laboratory 3 hours) Letter grade only
(A-F).

561./461. Hardware/Software Co-design (3)
Prerequisite: CECS 341 or 440 all with a grade of "C" or better.
Introduction to top-down methods for hardware/software system-on-chip co-design. Design flow – system specification, software
implementation, hardware synthesis, system design, and
verification. Process optimization with various design decisions emphasized. Projects/case studies using system-level design
methods and tools.
Additional projects required for CECS 561. (Lecture 2 hours,
laboratory 3 hours) Letter grade only (A-F).

570./670. Concurrent Parallel Programming (3)
Prerequisite: CECS 328, or 341, or 440 all with a grade of "C" or better.
Introduction to concurrent and parallel programming for
multiprocessing and distributed systems. Computational models
and paradigms. Parallel programming languages and programming
tools. Portable parallel programming and mapping techniques.
Heterogeneous concurrent programming. Concurrent programming
on local networks on workstations and personal computers.
Master’s students register in CECS 570 or 670; Ph.D. students register
in CECS 670. Additional projects required for CECS 670.
(Lecture-problems 2 hours, laboratory 3 hours) Letter grade only
(A-F).

572./672. Advanced Computer Networking (3)
Prerequisite: CECS 327 or 474 all with a grade of "C" or better.
Advanced concepts in computer network theory and practice.
Computer network design and standards for local area networks
(LANs) and wide area networks (WANs). Computer network
configuration and performance issues.
Master’s students register in CECS 572 or 672; Ph.D. students register
in CECS 672. Additional projects required for CECS 672.
(Lecture-problems 3 hours) Letter grade only (A-F).

574./674. Topics in Distributed Computer Systems (3)
Prerequisite: CECS 526 or 572 or 626 or 672 all with a grade of "C"
or better.
Network operating systems vs distributed operating systems,
research and design issues of distributed operating systems,
resources and resource management in distributed systems,
communication security and user authentication.
Master’s students register in CECS 574; Ph.D. students register in
CECS 674. Additional projects required for CECS 674.
(Lecture–problems 3 hours) Letter grade only (A-F). Not open for credit
to students with credit in CECS 673 or 773.
575./675. Object–Oriented Analysis and Design (3)
Prerequisites: CECS 475 and CECS 343 or 443 or 543 all with a grade of "C" or better.
Master’s students register in CECS 575 or 675; Ph.D. students register in CECS 675. Additional projects required for CECS 675.
(Lecture–problems 3 hours) Letter grade only (A–F).

578./478. Introduction to Computer Security (3)
Prerequisite: CECS 323, 328, and one course selected from 472, 474, 476 all with a grade of "C" or better.
Controlling the risk of computer security. Security threats and vulnerabilities in the development and use of computer systems. Tools and controls that can reduce or block these threats. Law, privacy and ethics.
Additional projects required for CECS 578. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A–F).

590./690. Selected Topics in Computer Science (3)
Prerequisites: Graduate standing and consent of instructor.
Each offering is based on an area in computer science and technology in which recent advances have been made.
Letter grade only (A–F). May be repeated to a maximum of 6 units with consent of department. Topics announced in the Schedule of Classes. Master’s students register in CECS 590 or 690; Ph.D. students register in CECS 690. Additional projects required for CECS 690. (Lecture–problems 3 hours)

621./521. Database Architecture (3)
Prerequisites: CECS 328 and 323 (or 421) all with a grade of "C" or better.
Relational database design theory—a rigorous approach. Security, recovery, transaction management, distributed databases and query optimization.
Master’s students register in CECS 521 or 621; Ph.D. students register in CECS 621. Additional projects required for CECS 621.
(Lecture–problems 3 hours) Letter grade only (A–F).

624./524. Advanced Topics in Programming Languages (3)
Prerequisite: CECS 424 with a grade of "C" or better.
Intensive study of languages of current interest which support object-oriented, client-server, and multimedia applications (e.g. JAVA).
Master’s students register in CECS 524 or 624; Ph.D. students register in CECS 624. Additional projects required for CECS 624.
(Lecture–problems 3 hours) Letter grade only (A–F).

626./526. Advanced Operating Systems (3)
Prerequisites: CECS 228 and 326 all with a grade of "C" or better.
Theoretical foundations of concepts applied in the design of operating systems. Control of concurrent processes, deadlocks, mutual exclusion, virtual memory, resource management and scheduling.
Master’s students register in CECS 526 or 626; Ph.D. students register in CECS 626. Additional projects required for CECS 626.
(Lecture–problems 3 hours) Letter grade only (A–F).

628./528. Advanced Analysis of Algorithms (3)
Prerequisites: CECS 328, MATH 380 or EE 380 all with a grade of "C" or better.
Theoretical analysis of algorithms. Divide and conquer, dynamic programming and greedy algorithms; basic search and traversal techniques including search trees; sorting; matrix manipulations; NP–completeness.
Master’s students register in CECS 528 or 628; Ph.D. students register in CECS 628. Additional projects required for CECS 628.
(Lecture–problems 3 hours) Letter grade only (A–F).

630./530. Advanced Computer Architecture I (3)
Prerequisite: CECS 341 or 440 all with a grade of "C" or better.
Master’s students register in CECS 530 or 630; Ph.D. students register in CECS 630. Additional projects required for CECS 630. (Lecture–problems 3 hours) Letter grade only (A–F).

631./531. Advanced Computer Architecture II (3)
Prerequisite: CECS 530 with a grade of "C" or better.
Advanced computer architecture with emphasis on parallel processing. Vector processors and multiprocessor systems. Dataflow computation. RISC/CISC. Hypercube. Parallel software. Applications in artificial intelligence, signal/image processing, neural network and optical computing.
Master’s students register in CECS 531 or 631; Ph.D. students register in CECS 631. Additional projects required for CECS 631. (Lecture–problems 3 hours) Letter grade only (A–F).

643./543. Advanced Software Engineering (3)
Prerequisite: CECS 434 or 443 all with a grade of "C" or better.
Study of software engineering as a broad, problem–solving discipline. Includes structured programming and software project management.
Master’s students register in CECS 543 or 643; Ph.D. students register in CECS 643. Additional projects required for CECS 643. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A–F).

644./544. Software Testing and Verification (3)
Prerequisite: CECS 543 with a grade of "C" or better.
Various types of software testing and verification techniques for software development including black box, white box, incremental, top-down and bottom-up, static and dynamic, performance, regression, thread, and stress testing. Discussion of object-oriented software testing with a hierarchical approach. Metrics in complexity for testing, test, and verification plan will be introduced. Automatic software testing and some case studies.
Master’s students register in CECS 544 or 644; Ph.D. students register in CECS 644. Additional projects required for CECS 644. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A–F).

645./545. Software Architecture (3)
Prerequisite: CECS 543 with a grade of "C" or better.
Includes architectural styles, pipes and filters, data abstraction and object-oriented organization, event-based, implicit invocation, layered systems, repositories, interpreters, process control, distributed processes, domain-specific software & heterogeneous architectures. Component-based design patterns & case studies.
Master’s students register in CECS 545 or 645; Ph.D. students register in CECS 645. Additional projects required for CECS 645. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A–F).

646./546. Fault Tolerant Computing Systems (3)
Prerequisite: CECS 530 with a grade of "C" or better.
Fault tolerant techniques are studied as tools to assure the reliability and continuous availability of computing systems. Case studies of modern fault tolerant systems reviewed. Software fault tolerant systems studied as alternatives to verification and validation approaches to software reliability.
Master’s students register in CECS 546 or 646; Ph.D. students register in CECS 646. Additional projects required for CECS 646. (Lecture–problems 3 hours) Letter grade only (A–F).

647./547. Software Maintenance, Reengineering and Reuse (3)
Prerequisites: CECS 343 or equivalent all with a grade of "C" or better.
Introduction to software maintenance, defect management, corrective, adaptive and perfective maintenance. Evolution of legacy software systems. Program comprehension techniques, reverse engineering, restructuring, refactoring of software systems. Software re-engineering, data reverse engineering.
Master’s students register in CECS 547 or 647; Ph.D. students register in CECS 647. Additional projects required for CECS 647. (Lecture–problems 3 hours) Letter grade only (A–F).
649./549. Advanced Computer Graphics (3)
Prerequisite: CECS 449 with a grade of "C" or better.
Master’s students register in CECS 549 or 649; Ph.D. students register in CECS 649. Additional projects required for CECS 649. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

650./550. Pattern Recognition Using Artificial Intelligence (3)
Prerequisite: CECS 451 with a grade of "C" or better or consent of instructor.
General concepts of pattern recognition and trainable classifiers, decision theory, supervised learning, non-parametric techniques, rule-based systems and neural networks.
Master’s students register in CECS 550; Ph.D. students register in CECS 650. Additional projects required for Ph.D. students. (Lecture-problems 2 hours, laboratory 3 hours) Letter grade only (A-F).

651./551. Advanced Artificial Intelligence (3)
Prerequisite: CECS 451 with a grade of "C" or better.
Advanced concepts in artificial intelligence. Topics include knowledge acquisition and representation, fuzzy logic, logical reasoning, multi-sensor integration, Dempster-Shafer’s theory of evidential reasoning, real-time expert systems and neural networks.
Master’s students register in CECS 551 or 651; Ph.D. students register in CECS 651. Additional projects required for CECS 651. (Lecture-problems 3 hours) Letter grade only (A-F).

652./552. Computer Simulation and Modeling (3)
Prerequisites: EE 380 or MATH 380 and CECS 326 all with a grade of "C" or better.
Studies of general purpose and special simulation software. Model verification including graphical models Applications in various areas.
Master’s students register in CECS 552 or 652; Ph.D. students register in CECS 652. Additional projects required for CECS 652. (Lecture-problems 3 hours) Letter grade only (A-F).

653./553. Machine Vision (3)
Prerequisite: Graduate standing in engineering or computer science.
Discussion and laboratory implementation of current research in vision and image understanding. Topics include image formation, early processing, segmentation, relational structures in 2-D and 3-D, motion, stereo, 3-D reconstruction, morphological methods and computer architecture for machine vision.
Master’s students register in CECS 553 or 653; Ph.D. students register in CECS 653. Additional projects required for CECS 653. (Lecture-problems 2 hours, laboratory 3 hours) Letter grade only (A-F).

670./570. Concurrent Parallel Programming (3)
Prerequisite: CECS 328, or 341, or 440 all with a grade of "C" or better.
Introduction to concurrent and parallel programming for multiprocessors and distributed systems. Computational models and paradigms. Parallel programming languages and programming tools. Portable parallel programming and mapping techniques. Heterogeneous concurrent programming. Concurrent programming on local networks on workstations and personal computers.
Master’s students register in CECS 570 or 670; Ph.D. students register in CECS 670. Additional projects required for CECS 670. (Lecture-problems 2 hours, laboratory 3 hours) Letter grade only (A-F).

672./572. Advanced Computer Networking (3)
Prerequisite: CECS 327 or 474 all with a grade of "C" or better.
Master’s students register in CECS 572 or 672; Ph.D. students register in CECS 672. Additional projects required for CECS 672. (Lecture-problems 3 hours) Letter grade only (A-F).

674./574. Topics in Distributed Computer Systems (3)
Prerequisite: CECS 526 or 572 or 626 or 672 all with a grade of "C" or better.
Network operating systems vs distributed operating systems, research and design issues of distributed operating systems, resources and resource management in distributed systems, communication security and user authentication.
Master’s students register in CECS 574; Ph.D. students register in CECS 674. Additional projects required for CECS 674. (Lecture–problems 3 hours) Letter grade only (A-F). Not open for credit to students with credit in CECS 773.

675./575. Object–Oriented Analysis and Design (3)
Prerequisites: CECS 475 and CECS 343 or 443 or 543 all with a grade of "C" or better.
Master’s students register in CECS 575 or 675; Ph.D. students register in CECS 675. Additional projects required for CECS 675. (Lecture-problems 3 hours) Letter grade only (A-F).

690./590. Selected Topics in Computer Science (3)
Prerequisites: Graduate standing and consent of instructor.
Each offering is based on an area in computer science and technology in which recent advances have been made.
Letter grade only (A-F). May be repeated to a maximum of 6 units with consent of department. Topics announced in the Schedule of Classes. Master’s students register in CECS 590 or 690; Ph.D. students register in CECS 690. Additional projects required for CECS 690. (Lecture-problems 3 hours)

694. Seminar in Computer Science (3)
Prerequisite: 6 units of 500- or 600-level CECS courses.
Intensive study of a broad selection of conceptual and theoretical problems in computer science. A written student research project and an oral presentation are required.
Letter grade only (A-F).

697. Directed Research (1-3)
Prerequisite: Classified Graduate standing.
Theoretical and experimental problems in computer science and engineering requiring extensive research. Advancement to candidacy and program GPA of at least 3.0 are required. Graduate advisor and project supervisor must be consulted prior to registration.
Independent Study. Letter grade only (A-F).

698. Thesis or Industrial Project (3-6)
Prerequisite: Advancement to Candidacy.
Planning, preparation, completion of thesis or equivalent industrial project report on a suitable topic in computer engineering and computer science following the library’s prescribed format. Requires consultation with Graduate Advisor and submission of Agreement for Independent Study form each semester.
May be repeated to a maximum of 6 units in the same semester.