Introduction

The Mission of the College of Engineering is to serve the State of California, the nation, and society at large, by graduating well-prepared professionals, who are provided with excellent education and training in the fundamentals of their discipline through a combination of theory and laboratory practice, and who are provided with the ability and skills to expand knowledge and transform complex ideas into working systems.

The College of Engineering offers four-year curricula leading to Bachelor of Science degrees in the disciplines of Engineering, Computer Science, and Engineering Technology. The B.S. programs provide broad education and training for entry to the professions and for continuing academic work toward advanced degrees. The graduate programs in the college include Master of Science degrees in Aerospace, Civil, Computer, Electrical and Mechanical Engineering, and in Computer Science. The Master of Science in Engineering is also offered in interdisciplinary areas. The Ph.D. in Engineering and Industrial Applied Mathematics is offered jointly with The Claremont Graduate University. These programs provide opportunities to specialize in the areas of Aerospace, Biomedical, Chemical, Civil, Computer, Electrical, Construction Management.

Accreditation

The Bachelor of Science programs in Aerospace, Chemical, Civil, Computer, Electrical and Mechanical Engineering are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

The Bachelor of Science in Computer Science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

Programs at a Glance

The following is a list of degree programs offered by the college. Details about each program is described in the respective sections of the catalog.

Bachelor of Arts:
- Engineering Systems

Bachelor of Science:
- Aerospace Engineering
- Chemical Engineering
- Civil Engineering
- Computer Engineering
- Computer Engineering Technology
- Computer Science
- Construction Engineering Management
- Electrical Engineering
- Electronics Engineering Technology
- Engineering
 - Option in Audio Engineering
 - Option in Biomedical and Clinical Engineering
 - Option in Industrial-Management Engineering
- Engineering Technology
- Manufacturing Engineering Technology
- Mechanical Engineering

Minors:
- Computer Science
- Computer Science Applications
- Environmental Engineering
- Web Technologies and Applications

Single Subject Teaching Credential:
- Industrial and Technology Education

Master of Science:
- Aerospace Engineering
- Civil Engineering
- Computer Science
 - Option in Computer Engineering
 - Option in Computer Science
- Electrical Engineering
- Engineering (Interdisciplinary)
- Mechanical Engineering
- Ph.D. in Engineering and Industrial Applied Mathematics
 (jointly with The Claremont Graduate University)

Certificates:
- Heating, Ventilating & Air-Conditioning Engineering (MAE)
- Not accepting new students as of Fall 2012
- Waste Engineering and Management (CECEM)
- Not accepting new students as of Fall 2012
Academic Standards

Preparation for Admission

High school students planning to enter engineering, engineering technology, or computer science are advised to pursue a program with courses in biology, physics, chemistry, advanced algebra, and trigonometry. The general requirements for admission to the University must be satisfied. Deficiencies in any of these areas may result in an extension of the time required to complete the program. Full-time students can complete any baccalaureate degree in engineering, engineering technology, or computer science in four years.

The curricula are also designed to accommodate students transferring from other colleges or universities. Full-time students who complete two years at a community college can complete the B.S. degrees in two additional years. Transfer students should note and follow, where possible, the appropriate curriculum as outlined in later sections. None of the COE programs are impacted.

Most required courses are offered in multiple sections every semester. In addition, many required courses are also offered during Summer Sessions.

General Academic Requirements

The College of Engineering values good communication skills which are achieved through the General Education courses and are measured by the Graduation Writing Assessment Requirement (GWAR). A student must fulfill the GWAR before qualifying for any degree. Students are advised that, while specific course requirements vary depending on the nature of the subject, most College of Engineering courses require not only detailed analysis, and competent design, but also clear and concise written and oral reports and presentations. ENGL 100 or equivalent is a prerequisite to upper division laboratory courses.

Letter Grade Policy

A grade of "C" or better must be achieved in prerequisites for courses required of Engineering, Computer Science, and Engineering Technology majors.

Required Foundation courses must be taken for a Letter grade only, not Credit/No Credit.

Concurrent and/or Summer Enrollment in Another College

Students who wish to take coursework in a community college or another college or university to meet curricular requirements while enrolled as an undergraduate in the College of Engineering must petition the appropriate department for prior approval to enroll in specific courses. This policy is for either concurrent enrollment or summer enrollment. University policy must also be complied with; see "Concurrent Enrollment" and "Transfer of Undergraduate Credit" in this Catalog. Courses not receiving prior approval may not be accepted for credit by the department.

The Engineering Student Success Center (ESSC)
Interim Coordinator of Academic Advising
Jason Deutschman (562) 985-2729
Director of Leadership and Diversity
Emmitt Clark (562) 985-1719
Director of Outreach and Recruitment
Saba Yohannes-Reda (562) 985-1463
Engineering Education Research Associate
Lily Gossage (562) 985-2498

The Engineering Student Success Center provides key services to students in an inclusive environment that fosters collaboration, community building and academic success skills. The center provides outreach and recruitment activities, first-year experience programs for freshmen and incoming transfer students, mandatory academic advising by professional and peer advisors, tutoring resources, professional development and practice services, and career and graduate school guidance. As a one-stop shop, the center encourages students to visit for help from professional advising staff. The center focuses its full efforts on informing, engaging and encouraging students to be self-directed in their educational planning process and overall academic success.

Undergraduate Programs

Bachelor of Science in Engineering

Option in Audio Engineering (127 units)

Not accepting new students as of Fall 2012

This option is designed to train students for work in the audio engineering industry. The curriculum in the College of the Arts will show students in the program how the arts and entertainment industry uses modern technology in the recording, processing and creation of sound. The curriculum in the College of Engineering will teach students how to analyze and design the electronic and computer components used in the arts and entertainment industry.

As this option is not ABET accredited, students are urged to either take a second major in Computer Engineering (follow the Computer Engineering Track) or Electrical Engineering (follow the Electrical Engineering Track)

Degree Progress

Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student’s performance in the courses merits an additional semester to complete.
First-Time Freshmen: A grade of "C" or better must be achieved in MATH 122 within one calendar year.
Transfer Students: A grade of "C" or better must be achieved in MATH 123 and PHYS 151 within one calendar year.

Requirements

Computer Engineering Track

Lower Division:
Take the following courses:
- BIOL 207 Human Physiology (4)
 Prerequisites: GE Foundation requirements.
- CECS 174 Intro to Programming & Problem Solving (3)
 Prerequisite: CECS 100 and MATH 113 (or equivalent) with a grade of "C" or better.
- CECS 201 Computer Logic Design I (3)
 Prerequisite: MATH 113 or equivalent with a grade of "C" or better.
- CECS 228 Discrete Structures with Computing Applications I (3)
 Prerequisites: CECS 174 and MATH 113 or equivalent with a grade of "C" or better.
- CECS 274 Object Oriented Programming and Data Structures (3)
 Prerequisite: CECS 174 with a grade of "C" or better.
- EE 210 Electro-Magnetic Foundations in EE (3)
 Prerequisite: PHYS 151 with a grade of "C" or better.
 Corequisites: MATH 123, EE 210L.
- EE 210L Electro-Magnetic Foundations in EE Lab (1)
- MATH 122 Calculus I (4)
 Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
- MATH 222 Intermediate Calculus (3)
 Prerequisite: A grade of "C" or better in MATH 122.
- MUS 190 Listener's Approach to Music (3)
 Prerequisites/Corequisites: ENGL 100 or another GE Foundation course.
- PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.

Upper Division:
Take the following courses:
- CECS 301 Computer Logic Design II (3)
 Prerequisites: CECS 174, 201 with a grade of "C" or better.
- CECS 311 Principles of Computer Engineering II (3)
 Prerequisites: CECS 201 and CECS 211 with a grade of "C" or better.
- CECS 326 Operating Systems (3)
 Prerequisites: CECS 282 and either 285 or 346 with a grade of "C" or better.
- CECS 346 Microprocessors and Controllers I (3)
 Prerequisites: CECS 211 and 262 with a grade of "C" or better.
- CECS 347 Microprocessors and Controllers II (3)
 Prerequisites: CECS 301, 311, and 346 with a grade of "C" or better.
- CECS 360 Integrated Circuit Design Software (3)
 Prerequisites: CECS 301, 346, MATH 123 or 222 with a grade of "C" or better.
- CECS 447 Microprocessors and Controllers III (3)
 Prerequisite: CECS 347 with a grade of "C" or better.
- CECS 460 System on Chip Design (3)
 Prerequisite: CECS 360 with a grade of "C" or better.
- CECS 497 Directed Studies (3)
 Prerequisite: Consent of instructor.
- E E 386 Digital Signal Processing (3)
 Prerequisites: EE 310 or CECS 301 with a grade of "C" or better.
- E E 486 Digital Signal Processing for Multimedia Communications (3)
 Prerequisite: EE 386 with a grade of "C" or better or graduate standing.
- ENGR 340 Guitar Electronics: Engineering Sound (3)
 Prerequisites: Upper division standing, GE Foundation requirements, one course from G.E. category BIB.
- MATH 323 Introduction to Numerical Analysis (3)
 Prerequisites: MATH 222 or 224, and a course in computer programming.
- MATH 370A Applied Mathematics (3)
 Prerequisite: MATH 123. Not open to Freshmen.
- MATH 380 Probability and Statistics (3)
 Prerequisite: MATH 222 or 224.

Take three courses from the following:
- FEA 307, THEA 449, EE 428, MUS 370, 455, 456

Take an approved technical elective.

Electrical Engineering Track

Lower Division:
Take the following courses:
- BIOL 207 Human Physiology (4)
 Prerequisites: GE Foundation requirements.
- CECS 100 Critical Thinking in the Digital Information Age (3)
 Prerequisite/Corequisite: ENGL 100 or its equivalent.
- MATH 122 Calculus I (4)
 Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
- MATH 224 Calculus III (4)
 Prerequisite: A grade of "C" or better in MATH 123 or 222.
- MATH 224 Calculus III (4)
 Prerequisite: A grade of "C" or better in MATH 123 or 222.
- MUS 190 Listener's Approach to Music (3)
 Prerequisites/Corequisites: ENGL 100 or another GE Foundation course.
- PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.
- PHYS 151 Mechanics and Heat (4)
 Prerequisite: MATH 122 (or equivalent) with a grade of "C" or better.
- E E 201 Digital Logic Design (4)
 Prerequisite: MATH 117 (or equivalent) with a grade of "C" or better.
- E E 202 Computer Methods in Engineering (3)
 Prerequisites: CECS 100 and MATH 123 with a grade of "C" or better.
- E E 210 Electro-Magnetic Foundations in Electrical Engineering (3)
 Prerequisites: MATH 123, PHYS 151 with a grade of "C" or better.
- E E 210L Electro-Magnetic Foundations in Electrical Engineering laboratory (1)
- E E 211 Electric and Electronic Circuits (3)
 Prerequisites: (EE 210/210L or PHYS 152) and (MATH 123 or equivalent) with a grade of "C" or better.
- E E 211L Electric Circuits Laboratory (1)
 Corequisite: EE 211.
- MUS 190 Listener's Approach to Music (3)
 Prerequisites/Corequisites: ENGL 100 or another GE Foundation course.
- ENGR 340 Guitar Electronics: Engineering Sound (3)
 Prerequisites: Upper division standing, GE Foundation requirements, one course from G.E. category BIB.
- MATH 323 Introduction to Numerical Analysis (3)
 Prerequisites: MATH 222 or 224, and a course in computer programming.
- MATH 370A Applied Mathematics (3)
 Prerequisite: MATH 123. Not open to Freshmen.
- MATH 380 Probability and Statistics (3)
 Prerequisite: MATH 222 or 224.

Take three courses from the following:
- FEA 307, THEA 449, EE 428, MUS 370, 455, 456

Take an approved technical elective.
Upper Division:

Take the following courses:

CE 370 Analytical Mechanics (3)
 Prerequisites: PHYS 151 with a grade of "C" or better; Prerequisite/Corequisite: MATH 123.

EE 310 Signals and Systems (3)
 Prerequisites: EE 211; and MATH 370A or equivalent with a grade of "C" or better.

EE 330 Analog Electronic Circuits I (4)
 Prerequisite: EE 211 with a grade of "C" or better.

EE 346 Microprocessor Principles and Application (3)
 Prerequisites: EE 201, (CECS 100 or equivalent) with a grade of "C" or better.

EE 360 Electromagnetic Fields (3)
 Prerequisites: MATH 224, EE 310 with a grade of "C" or better.

EE 370 Control Systems (3)
 Prerequisite: EE 310 with a grade of "C" or better.

EE 370L Control Systems Laboratory (1)
 Prerequisite/Corequisite: EE 370.

EE 382 Communications Systems I (3)
 Prerequisite: EE 310 with a grade of "C" or better.

EE 386 Digital Signal Processing (3)
 Prerequisites: EE 310 or CECS 301 with a grade of "C" or better.

EE 430 Analog Electronic Circuits II (3)
 Prerequisites: EE 330 and 370 with a grade of "C" or better, or graduate standing.

EE 444 Microprocessor Based System Design (3)
 Prerequisites: EE 346 with a grade of "C" or better or graduate standing.

EE 486 Digital Signal Processing for Multimedia Communications (3)
 Prerequisite: EE 386 with a grade of "C" or better or graduate standing.

ENGR 340 Guitar Electronics: Engineering Sound (3)
 Prerequisites: Upper division standing, GE Foundation requirements, one course from G.E. category B1b.

MATH 370A Applied Mathematics I (3)
 Prerequisites: MATH 123. Not open to Freshmen.

Take one of the following courses:

EE 489 Digital Signal Processing Design (3)
 Prerequisites/Corequisites: (EE 400D and 486) or graduate standing.

EE 490 Special Problems (3)
 Prerequisites: Minimum G.P.A. of 2.5 and consent of instructor.

Take three courses from the following:

FEA 307, THEA 449, EE 428, MUS 370, 455, 456

Take an approved technical elective.

Bachelor of Arts in Engineering Systems (120 units)

Program Director: Tracy Bradley Maples

The Bachelor of Arts in Engineering Systems provides students with an opportunity to study engineering in an interdisciplinary environment. This program combines a core engineering program with two options and course work and programs in business, communications, design, economics, or language.

Degree Progress

Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student’s performance in the courses merits an additional semester to complete.

First-Time Freshmen: A grade of “C” or better must be achieved in MATH 111 and 113 within one calendar year.

Transfer Students: A grade of “C” or better must be achieved in MATH 122 within one calendar year.

Requirements

Core

Thirty-one units required. Take all of the following:

CECS 100 Critical Thinking in the Digital Information Age (3)
 Prerequisite/Corequisite: ENGL 100 or equivalent.

CECS 174 Introduction to Programming and Problem Solving (3)
 Prerequisite: CECS 100 and MATH 113 (or equivalent) with a grade of "C" or better.

CECS 202 The Digital Information Age (3)
 Prerequisite: GE Foundation requirements.

CECS 312 Introduction to Distributed Operating Systems (3)
 Prerequisite: CECS 174 with a grade of "C" or better.

CECS 414 Introduction to Network and System Security Issues (3)
 Prerequisites: CECS 174 with a grade of "C" or better.

ENGR 203 Engineering Problems and Analysis (3)
 Prerequisite: MATH 122 with a grade of "C" or better; Corequisite: ENGR 203L.

ENGR 310 Business Communications in Engineering Profession (3)
 Prerequisites: ENGL 100, COMM 110 with a grade of "C" or better.

ENGR 498 Engineering Systems Senior Project (3)
 Prerequisite: Senior Standing.

MATH 122 Calculus I (4)
 Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.

Take one of the following:

EE 403 Systems Engineering (3)
 Prerequisites: ENGR 203 or EE 202 with a grade of "C" or better, or graduate standing.

EE 380 Probability, Statistics & Stochastic Modeling (3)
 Prerequisites: MATH 122; (CECS 100 or equivalent) with a grade of "C" or better.

Select one of the following emphases (31 units)

Emphasis in Systems and Security

Take all of the following:

PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.

CECS 110 Web Design I (3)
 Prerequisites: None.

CECS 200 Web Design II (3)
 Prerequisite: CECS 110 with a grade of "C" or better.

CECS 410 Computers and Networks (3)
 Prerequisite: Course design assumes familiarity with computers.

CECS 412 Introduction to Computer Network Architectures (3)
 Prerequisite: Familiarity with computers.
ENGR 302I Energy and Environment: A Global Perspective (3)
 Prerequisites: G.E. Foundation requirements, one or more Exploration courses, and upper-division standing.
ENGR 350 Computers, Ethics and Society (3)
 Prerequisites: 3 units from GE Category A.1 (Writing) and 3 units from GE Category D (Social and Behavioral Science).
Take 9 units of approved engineering and non-engineering courses (see program advisor for a detailed list of courses)

Emphasis in Systems Engineering
Take all of the following:
 MATH 123 Calculus II (4)
 Prerequisite: A grade of "C" or better in MATH 122.
 CECS 271 Introduction to Numerical Methods (3)
 Prerequisites: CECS 174 and MATH 123 with a grade of "C" or better.
 CECS 345 Fundamentals of Embedded Systems (3)
 Prerequisite: CECS 202 with a grade of "C" or better.
 ENGR 432 Logistics Systems Engineering (3)
 Prerequisite: Consent of instructor.
 CE 406 Cost Engineering and Analysis (3)
 Prerequisite: GE Foundation requirements.
 EE 402 Engineering Modeling and Simulation (3)
 Prerequisite: EE 380 with a grade of "C" or better.
Take one of the following:
 EE 380 Probability, Statistics & Stochastic Modeling (3)
 Prerequisites: MATH 122; (CECS 100 or equivalent) with a grade of "C" or better.
 EE 403 Systems Engineering (3)
 Prerequisites: ENGR 203 or EE 202 with a grade of "C" or better, or graduate standing.
Take 9 units of approved engineering and non-engineering courses (see program advisor for detailed list of courses)
Take 24 units of non-engineering courses with advisor's consent:
 • Business (e.g., Finance, Information Systems, Operations Management)
 • Communication Studies
 • Design
 • Economics
 • Foreign language
Take approved engineering and non-engineering courses to reach a total of 120 units including 40 upper division units (see program advisor for a detailed list of courses)

Minor in Environmental Engineering
This 18-unit interdisciplinary minor is designed for undergraduates from various engineering and science backgrounds who are interested in applying engineering approaches to environmental issues.

Requirements
A minimum of 6 units selected from the following core:
Take one of the following courses:
 C E 364 Environmental Engineering I: Fundamentals (3)
 Prerequisites: CHEM 111A, BIOL 200/MICR 200 with a grade of "C" or better.
 Prerequisite/Corequisite: CE 335.
 CH E 475 Environmental Pollution (3)
 Prerequisite: CHEM 320A or 327 with a grade of "C" or better, or consent of instructor.
Take the following course:
 CH E 455 Environmental Compliance (3)
 Prerequisite: CHEM 327 with a grade of "C" or better or consent of instructor.
Take 12 units from the following:
 CH E 415, 445, 465, 485; C E 466; E T 409F, 476
Most of the courses in the minor require some background in engineering and/or chemistry. Upper division students majoring in Biology, Chemistry, Chemical Engineering, Civil Engineering, or Mechanical Engineering may have sufficient background to select from the above choices without needing additional prerequisites. Those majoring in other branches of science and engineering may need several additional courses in engineering and/or chemistry to meet prerequisite requirements of courses in this minor.
All prerequisites to the courses in the minor must be completed with a grade of "C" or better.

Graduate Programs

Master of Science in Engineering
Program Director: Burkhard Englert
Typical tasks and responsibilities undertaken by students in the curriculum for this program would not fall within one of the traditional specialties in engineering, e.g. aerospace, chemical, civil, electrical and mechanical engineering, or computer science and engineering. The student may pursue an interdisciplinary program, approved by a graduate advisor, by selecting courses from the various departments of engineering. For information concerning the programs, special facilities, laboratories and research possibilities, contact the College of Engineering.

Prerequisites
1. A bachelor's degree in an ABET accredited curriculum in engineering with a minimum GPA of 2.7; or
2. A bachelor's degree with a minimum GPA of 2.7 in engineering, mathematics, natural science or other discipline with the requirement that essential undergraduate prerequisites in engineering are satisfied.
3. The general Graduate Record Examination (GRE) is required.
4. Graduate students must consult with a graduate advisor, with whom they will be working, for information concerning procedures and requirements for appropriate approval of their courses of study prior to enrolling in their graduate programs.
5. The Graduation Writing Assessment Requirement (GWAR) must be met during the first semester in residence. Failure to attempt to fulfill the GWAR during the first semester will prevent registration in engineering courses in subsequent semesters.

Requirements
1. Completion of a minimum of 30 units beyond the bachelor's degree in upper division and approved graduate courses, including:
 A. A minimum of 18 units of 500- and/or 600-level courses in engineering;
B. Six units of electives selected from approved upper division (400-level) or graduate courses from appropriate areas;
C. Completion of an acceptable thesis or project and/or comprehensive examination.

Note: Students are strongly advised to read and be familiar with the campus regulations described under “Graduate Programs” elsewhere in this catalog.

Advancement to Candidacy
Students applying for advancement to candidacy must have:
1. completed all undergraduate deficiencies with grades of “C” or better;
2. attained an overall grade point average of (GPA) or 3.0;
3. completed at least 12 units applicable to the degree with a GPA of at least 3.0;
4. fulfilled the Graduation Writing Assessment Requirement (GWAR). This requirement can also be met by presenting evidence that the student met the requirement while an undergraduate at CSULB or at certain CSU campuses;
5. program of studies approved by the program’s graduate advisor.

Graduate Certificate in Systems Engineering
Not accepting new students as of Fall 2012. This 18-unit post-baccalaureate certificate is focused toward development and management of complex systems. Each such complex system requires a clear Systems Engineering Master Plan, a set of methodologies, appropriate tools, a rigorous requirements flow-down technique, and a comprehensive Project Management Plan to enable system design and project management for effective and efficient human interaction.

Please be aware that this program is not eligible for Financial Aid unless pursued concurrently with a degree program.

Requirement
1. Completion of an accredited baccalaureate degree in engineering or equivalent;
2. Satisfactory completion of 18 units listed below;
3. File a program application card with Admissions and Records, and file for the Certificate at least one semester prior to completion;
4. The Certificate may be awarded concurrently or subsequently to baccalaureate degree.

Required Courses
The Certificate Program requires a minimum of 18 semester units, as indicated below.

1. System Engineering Core Courses, 6 units of the following:
 EE 503 Advanced Systems Engineering (3)
 MAE 508 Systems Engineering and Integration (3)
 Prerequisites: Consent of instructor.

2. Engineering Management Courses, 6 units from the following:
 CECS 521 Database Architecture (3)
 MAE 506 Management of Engineering Technology and Innovation (3)
 Prerequisite: Graduate engineering standing.
 MAE 507 Engineering Project Management (3)
 Prerequisite: Graduate engineering standing.

3. Manufacturing Courses, 3 units of the following:
 MAE 574 Computer-Aided Manufacturing (3)
 Prerequisites: MAE 322, 490A with a grade of “C” or better.

4. Advanced Engineering Mathematics/Analysis Courses, 3 units from the following:
 EE 502 Engineering Modeling and Simulation (3)
 EE 505 Advanced Engineering Mathematics for Electrical Engineers (3)
 EE 508 Probability Theory & Random Processes (3)
 EE 501 Engineering Analysis I (3)
 EE 502 Engineering Analysis II (3)
 Prerequisites: Consent of instructor.
 Prerequisites: MAE 322, 490A with a grade of “C” or better.

Ph.D. in Engineering and Industrial Applied Mathematics
Program Director: Burkhard Englert

Degree Designation
In accordance with an agreement between Claremont Graduate University and CSULB, the degree is granted at Claremont Graduate University in the name of the two universities. The diploma indicates the dual nature of the degree and specifies that it is granted only when requirements have been satisfied in both subject areas as specified by the collaborating institutions.

Program Supervision
Overall program supervision is the responsibility of the Program Committee, consisting of the directors of the Joint Doctoral Program (JDP) from each institution, the Dean of Mathematics at CGU, and the Dean of Engineering at CSULB.

Admission Requirements
Students must be admitted to both institutions jointly. Admission will be granted to a limited number of qualified students; therefore, application should be made as early as possible. Applications are encouraged from both men and women, particularly from members of minority groups or individuals with disabilities. Completed applications must be received by April 1 for the fall semester or October 1 for the spring semester, although late applications are allowed at the discretion of the Program Committee. The Program Committee is responsible for making admission decisions consistent with campus regulations (see Application Procedure in this booklet).

To be admitted to the Joint Doctoral Program, an applicant must have received a bachelor’s or master’s degree in science, engineering, or mathematics from an accredited institution. Moreover, he or she must have attained scholastic records and present confidential recommendations which indicate that he or she is well qualified to pursue, with distinction, advanced study and research. Be advised that admission may be refused solely on the basis of limited facilities in the option desired.
GRE Requirement
The analytical, verbal, and quantitative portion of the Graduate Record Examination (GRE) is required before admission. GRE subject examinations (mathematics and engineering) are not required. Applicants whose first or native language is not English are required to have a current minimum score of 550 (213 on the new scale) on the Test of English as a Foreign Language (TOEFL); however, this requirement is waived for students with a bachelor’s or master’s degree from an accredited U.S. university.

Registration and Enrollment
It is important that students register and enroll in classes each semester at either CGU or CSULB. Failure to enroll at any given semester will be considered leave without permission (discontinued enrollment) and the student will be dropped from the program.

Program Planning and Supervision
At CSULB, an initial engineering advisor is assigned to the student at the time of admission. At CGU, the student needs to arrange with the program director, within the first semester of study, for a mathematics advisor. The student’s program of study is arranged individually in collaboration with their advisors; the two advisors confer periodically regarding the student’s progress. The Program Committee monitors the student’s overall performance.

Course Work and Examinations
A minimum 72 units of course work, independent study, and research (including transfer credit) must be completed. Transfer credit of up to 24 units of related courses at the master’s level is permissible on approval of the Program Committee; this course work must have been completed with at least a grade of “B” or better, at an accredited institution, and must be directly related to the joint program and the student’s goals. Of the 72 units, a minimum of 24 units must be completed in the graduate engineering program at CSULB and a minimum of 24 units in the graduate mathematics program at CGU. Both sets of 24 units must conform to the area requirements of the relevant institution and must be approved by the Program Committee. All degree requirements must be completed within seven years (or six with the transfer of 24 units according to CGU regulations) from the time a student begins graduate study.

Every doctoral student must maintain a cumulative grade-point average (GPA) of 3.0 and a grade-point average of 3.0 in all courses applicable to the degree. Furthermore, students must earn at least a grade of “B” or better in any course that is counted towards the course work requirement. Students are put on academic probation if they fail to maintain a cumulative or term GPA of at least 3.0 in all units attempted subsequent to admission to the degree program. After two consecutive semesters on probation, students are subject to disqualification if they fail to earn sufficient grade points to be removed from the probationary status.

CSULB Course Requirement
The only specific CSULB course requirement is four units of Engr 796 Doctoral Seminar (2). The remaining 20 units, for students who have received transfer credit, may include courses needed for the Preliminary Examinations (see the Preliminary Examination section of this handbook), Doctoral Dissertation, Advanced Special Topics, and Advanced Directed Studies. Presently, students are permitted to count the following courses in addition to the regular graduate courses, offered by the five engineering departments, towards meeting the CSULB 24-unit course requirement.

ENGR 790: Advanced Special Topics in Engineering
Prerequisites: MS or equivalent and formally admitted to the Ph.D. program.

ENGR 795 or MAE 795: Advanced Directed Studies
Prerequisite: Graduate Standing.

ENGR 796: Doctoral Seminar (4 units required)
Prerequisite: Graduate Standing.

ENGR 798 or MAE 798: Doctoral Dissertation (4 units allowed)

Minimum Student Load Per Semester
It is highly recommended that doctoral students enroll in at least 9.0 units per semester in order to demonstrate progress towards the degree. The CSULB director of the program, in consultation with the doctoral advisor, may require that a student take at least 9.0 units per semester if the student is not showing adequate progress. These courses may include the following:

- ENGR 797A Preparation for Ph.D. Preliminary Examinations
 Prerequisite: Graduate Standing.

- ENGR 797B Preparation for Ph.D. Qualifying Examination
 Prerequisite: Graduate Standing.

Students may take from 4.0 to 12.0 units of ENGR 797A or ENGR 797B each semester, though these courses may not be used to fulfill the 72-unit course work. Both of these courses are offered on Credit/No Credit bases and are designed to formally recognize the students’ efforts towards the program.

Residency Requirements
Doctoral students must complete their program within a period of seven years (or six with the transfer of 24 units) according to CGU regulations (see below). During this time, a minimum of 72 units of course work, independent study, and research (including transfer credit) must be completed. Normally no more than 16 units per semester may be credited toward the degree. No more than 12 units per summer session may be credited toward the degree. The transfer of credit form is available on the CGU website. The Program Committee will consider petitions for extensions and/or exemptions.

All degree requirements must be completed within seven years from the time a student begins graduate study. Work for which transfer credit is granted will be counted as part of the seven years, e.g., if transfer credit of 24 units (one year) is granted, the time limit will be six years.

The residency requirements for the Ph.D. may be met either by two semesters of full-time study in a 24-month period or by the completion of 48 units of course work within a 48-month period (including work in the summer session). There are special provisions for students transferring units as described below.

Students who receive transfer credit for 12 units or less
may meet the residency requirement either by completing two full-time semesters of course work within a 24-month period or by completing 36 units within a 48-month period. Those receiving transfer credit for 13 to 24 units may meet the residency requirement by completing 24 units within a 36-month period. The seven-year maximum time period for the Ph.D. degree is reduced by six months for 12 units or less of transfer credit and by 12 months for 13 to 24 units of transfer credit.

Plan of Study

After consultation with their advisors, students are required, before the end of the first year, to prepare and file with the Program Committee a Plan of Study for completing the course requirements for the degree. The purpose of the Plan of Study is to ensure that the student is aware of the requirements for the degree. The Plan of Study should indicate the areas of study that the student will be taking in preparation for the preliminary examinations. In consultation with the student’s advisor and Program Committee, the Plan of Study may be altered at a subsequent time by petition.

If a student withdraws from the program after completing a substantial portion of the course work, a master’s degree at either or both institutions is still possible by satisfaction of the appropriate requirements. Both CGU and CSULB require 30-36 semester units of course work for master’s degrees.

Preliminary Examinations

The student is required to pass written preliminary examinations. These examinations consist of four examination areas: two in engineering and two in mathematics. These examinations shall be taken immediately after completion of the relevant course work at each institution. These examinations are given two or three times a year at the discretion and under the control of the Program Committee. Should a student fail an examination, they may petition the Program Committee for one retake.

Before taking the first preliminary examination, the student is required to complete the Preliminary Examination Permission Form (available at the CSULB website, www.cslb.edu/colleges/coe, or at the CGU site, www.cgu.edu/math). This form requires the student to specify the four areas of the Preliminary Examination; the student’s intended dissertation advisor and the directors of the Joint Doctoral Program must sign it. The purpose of this form is to certify that the student and dissertation advisor are in agreement on the set of examinations. If, in the course of time, this set of examinations and/or the advisor is amended, the form must be resubmitted. The preliminary examinations are considered completed when the four examinations specified on the student’s form have been successfully passed. You must be enrolled at CSULB (e.g., enrolling in at least 4.0 units of 797A) in order to take the CSULB portion of the Preliminary Examinations. For a list of courses, please review the student handbook at our website www.cslb.edu/coe/phd

Research Tool

Students in the Joint Doctoral Program must demonstrate proficiency in problem-solving ability using computer programs. This demonstration may take different forms depending on the student's engineering sub-discipline, but must include evidence that the student has used an appropriate computer language and an algorithmic method to solve a problem from an engineering discipline.

Research and Dissertation

Upon completion of at least 48 units of course work (including transfer units), the preliminary examinations, and the research tool requirement, a student embarks on the research phase of the Joint Doctoral Program. In preparation for the research phase, the student is expected to spend at least a semester in advanced graduate courses, seminars, or directed reading courses where exposure to research material is emphasized. From these and other sources, the student gains the ability to understand the motivation for research in engineering and applied mathematics and learns to apply research techniques.

Doctoral Committee

During entry to the program and through the period of the main body of course work at CGU and CSULB, the Program Committee will monitor the student’s progress. Upon successful completion of the preliminary examinations, the student petitions the Program Committee to constitute the Doctoral Committee. The student chooses this committee with advice from the faculty advisor and with approval of the Program Committee. The committee must include at least two faculty members each from CGU and CSULB: it must also provide breadth and depth in mathematics and engineering in the chosen faculty members. The Doctoral Committee supervises the student’s progress through research preparation and dissertation writing; it also administers the qualifying and oral examinations for the degree. The chair of the Doctoral Committee is the dissertation supervisor.

Research Proposal and Qualifying Examination

With these advanced courses as background, and with the guidance of the Doctoral Committee, the student defines an area of proposed research and prepares a written Dissertation Proposal containing an outline of the research to be undertaken and references to relevant source materials. The Dissertation Proposal is presented to the Doctoral Committee at least two weeks prior to the Qualifying Examination. The appropriate form under “Doctoral Degree Forms” can be obtained from the CGU website www.cgu.edu (under Current Students, Registrar Information). The Qualifying Examination is an oral presentation to the Doctoral Committee describing the planned research. The student is expected to present evidence both as to the mathematical content and to the engineering application of the proposed research, supporting such evidence with references to previous research in both areas. The Doctoral Committee judges the fitness and quality of the Dissertation Proposal from this presentation and from the written proposal. It subsequently communicates its recommendations to the Program Committee. Only upon a positive recommendation may the student embark on a dissertation. In the event of failure, the qualifying examination may be retaken once after petition to the Program Committee.
Advancement to Candidacy
After successful completion of the Qualifying Examination and certification that all other requirements are fulfilled, the student is advanced to candidacy. The appropriate form under “Doctoral Degree Forms” may be obtained from the CGU website. This must occur at least six months before the Final Oral Defense.

Dissertation and Final Oral Examination
Upon completion of the research, the student will prepare the dissertation in accordance with CGU regulations. A final draft of the dissertation will be presented to each member of the Doctoral Committee at least three weeks prior to the final oral examination. The appropriate form under “Doctoral Degree Forms,” along with an abstract of the dissertation, must be filed with CGU’s Office of Admission and Records three weeks before the exam. This deadline is very strict and no exceptions will be made. Please see the CGU website under “Academic Calendar” for the final defense scheduling dates. The oral defense will normally be held on the campus of the dissertation supervisor.

Policies and Procedures
1. Throughout their entire program of study, unit-taking students must be registered at either CGU or CSULB. Students, who intend not to take course work at either institution, including those who have finished their required units, must take the necessary steps to maintain continuous enrollment. This is achieved by registering for Math 499 (Doctoral Study) at Claremont Graduate University or by registering for Engineering 798 (Doctoral Dissertation) at California State University, Long Beach. At least two semesters of registration for Math 499 at CGU must be maintained during the last year prior to graduation. In order for the degree to be conferred, a student must meet all regulations as stated in the CGU Bulletin under “Degree Regulations.”

Requests for leave of absence must be submitted to each registrar’s office and approved by both institutions according to the standards of each; upon approval of leave the student should advise the math office at CGU and the office of the Joint Doctoral Program at CSULB. Students should contact each registrar’s office for leave of absence policies. If the student fails to advise the registrar at CGU of his/her leave granted by CSULB, he/she will be dropped from the program (CGU has no official arrangement for leaves). Upon return, the student will be required to pay CGU a reinstatement fee in addition to regular semester tuition.

2. International students registered for units at CSULB must provide the CGU International Student Advisor, Nusha Shishegar, with proof of registration within two weeks of the beginning of the semester at CGU. Proof of full-time registration (8 units minimum) is required to maintain immigration status. (In the circumstance of completion of units, registration in Doctoral Study, CGU Math 499, is required.)

3. Students should arrange for advisors, one in math at CGU and one in engineering at CSULB, at the earliest opportunity. The program committee will help provide advisors.

4. After consultation with their advisors, students must submit a plan of study, including a petition for transfer of credits, if applicable, during their first year of study. The Plan of Study must be approved and transfer of units recommended to the Registrar by the program committee.

Procedures for Student Admission
1. Students must complete application forms for both CGU and CSULB. The completed application package must include official transcripts, three letters of reference (preferably on the forms supplied in the CGU package), a personal statement and a resume. Current, official GRE scores are required. Scores may not be older than 5 years.

2. The completed application package (including a separate Long Beach fee and application) must be submitted to the CGU Admissions Office, 160 East Tenth Street, Claremont, CA 91711-6163. Do not send application materials to CSULB as this will result in considerable delay. Both application fees are required.

3. Online applications are acceptable for the Joint Program; however, consult the Program Advisors at CGU and CSULB for appropriate procedures.

4. The CGU director of the CSULB/CGU Joint Doctoral Program, Ellis Cumberbatch, reviews completed files. In the event of a negative review, a rejection letter is issued by CGU. In the event of a positive review, the application, along with a copy of the completed file, is forwarded to the CSULB director of the CSULB/CGU Joint Doctoral Program, Dr. Mahyar Amouzegar.

5. Results of the Long Beach review are transmitted back to CGU Math. Upon a positive review by CSULB, the application and fee are sent to the CSULB Admissions Office to be processed. A negative review initiates a rejection letter from CGU.

6. Upon admission to the program, CGU will generate two admission letters; one is mailed to the student and one is sent to CSULB. This letter includes a decision card and specifies a required $200 tuition deposit that should be submitted to CGU if the student chooses to accept the offer of admission.

7. Students admitted to provisional status must provide the materials needed to complete their files before the end of their first semester of enrollment. Official scores for the GRE General Test are required of all students before admission to full graduate standing. The joint faculty program committee will review completed files for change of status.

8. The academic progress of students admitted to conditional status will be reviewed by the program committee prior to a decision about change of status.

Courses (ENGR)

LOWER DIVISION

100. Fundamentals of Engineering Analysis (4)
Prerequisites: Appropriate ELM score, ELM exemption, or MAPB11.
Use of an application-oriented, hands-on approach to math topics in a variety of core engineering courses; analysis of experimental data; applications of MATLAB in solving engineering problems.
Letter grading only (A-F). (Lecture 3 hours, Laboratory 3 hours)
101. Introduction to the Engineering Profession (1)
Prerequisite/Corequisite: MATH 111 or MATH 113 or MATH 122
Freshman orientation seminar on careers in engineering. Speakers from various fields illustrate opportunities and challenges in the engineering profession.
(Lecture-problems 1 hour) Letter grade only (A-F).

102. Academic Success Skills (1)
Prerequisite: ENGR 101 with a grade of "C" or better.
Development of skills and identification of strengths and weaknesses for success in a COE major.
(Lecture 1 hour). Letter grade only (A-F).

123. Inventions and Innovations: Good, Bad, and Weird (3)
Use of language, thought, and logic in science, distinguishing scientific fact from science fiction. Critical review of technological achievements from ancient times to the present, from practical inventions to perpetual motion machines. Science, pseudoscience, and paranormal. Experimentation and witchcraft.
(Lecture-Problems 3 hours)

130. Health, Energy, Environment, Transportation (HEET) (3)
Prerequisites: Completion of high school classes in geometry, algebra, chemistry, and environmental sciences.
Introductory course in healthy environment requirements, renewable energy, elements green design, transport systems and management, economics, environmental impacts of transportation. Hybrid, module-based class, with simulations, interact exercises, design projects and assessments renewable energy, green design, water resources, and air quality.
Letter grade only (A-F). (Lecture 3 hours)

170. Introduction to Solid Modeling and Engineering Graphics (2)
Prerequisites: Knowledge of geometry and intermediate algebra. Introduction to part modeling, solid models, detail drawings with dimensioning and assembly modeling using SolidWorks software. Focuses on project-based learning, which organizes learning around complete projects.
Letter grade only (A-F). (Lecture-problems 1 hour, Lab 2 hours)

203. Engineering Problems and Analysis (3)
Prerequisite: MATH 122 with a grade of "C" or better; Corequisite: ENGR 203L.
Formulation of engineering problems and methods for their analysis. Application of vectors, matrices, derivatives and integration into engineering problems. Computer aided analysis using MATLAB, MathCad, etc.
(Lecture - Problems hours) Letter grade only (A-F).

203L. Engineering Problems and Analysis Laboratory (1)
Prerequisite: MATH 122 with a grade of "C" or better; Corequisite: ENGR 203.
Computer-based exercises on fundamental concepts such as vectors, matrices, derivatives, integrals. Practical engineering problems are assigned and solved using MATLAB.
(Laboratory 3 hours) Letter grade only (A-F).

UPPER DIVISION

302L. Energy and Environment: A Global Perspective (3)
Prerequisites: G.E. Foundation requirements, one or more Exploration courses, and upper-division standing.
(Lecture-Problem 3 hours) Letter grade only (A-F).

310. Business Communications in Engineering Profession (3)
Prerequisites: ENGL 100, COMM 110 all with a grade of "C" or better.
Letter grade only (A-F). (Lecture-Problem 3 hours) May be used to satisfy the GWAR. Students who have failed the WPE at least once can take the course and submit a portfolio at the end for GWAR credit that will be issued if the student passes the portfolio that is reviewed by a committee.

340. Guitar Electronics: Engineering Sound (3)
Prerequisites: Upper division standing, GE Foundation requirements, one course from G.E. category Blb.
Historical review of electro-magnetic principles and their application to the reproduction, modification, and creation of sound. The electric guitar, its amplifiers, and special effects devices (analog and digital) will be used to gain practical experience. Electrical safety, physiology and physics of the ear.
Not open for credit to students with credit in EE 333. (Lecture 2 hours, laboratory 3 hours) Letter grade only (A-F).

350. Computers, Ethics and Society (3)
Prerequisites: 3 units from GE Category A.1 (Writing) and 3 units from GE Category D (Social and Behavioral Science).
Examination of the social impact of information technologies. Topics include a survey of the technology (software, hardware and key applications), ethical obligations of specialists, the computer in the workplace, shifts of power, privacy, and legal issues related to computing.
(Lecture-problems 3 hrs)

360. Robotic Technology in Health Care (3)
Explores various robotic innovations developed for biomedical applications and their global impact on the quality of patient care, economy, and policy through new methods and tools for diagnosis and treatment, clinical training, education, and rehabilitation.
Letter grade only (A-F). (Lecture-Problems 3 hours)

370L. Astronautics and Space (3)
Prerequisites: GE Foundation requirements, one or more Exploration courses, and upper-division standing.
Combines the disciplines of space engineering with economics, human physiology, satellite meteorology, earth resources and environmental science, astronautics and space exploration. Emphasis on oral and written communications, numeracy and use of computers. Extensive use of computer animation, videographics and the Internet.
(Lecture–problems 3 hours) Letter grade only (A-F).

388. Engineering for Elementary School Teachers (3)
Developing and fabricating teaching aids and integrated hands-on projects for elementary schools. Basic skill in teaching engineering and technology in the elementary grades.
(Lecture 2 hours, Laboratory 3 hours)

392. Water: People, Politics, and Processes (3)
Prerequisite: GE Foundation requirements.
Explores the impact of water resources management on society, economy, and governance through socio-political and hydrological overviews as well as both domestic and international case studies.
Letter grade only (A-F). Same course as I/ST 350. Not open for credit to students with credit in I/ST 350. (Lecture-Problems 3 hours)
Courses (ENGR)

432./532. Logistics Systems Engineering (3)
Prerequisite: Consent of instructor.
Logistics concepts, methods and techniques for engineering. Logistics from a historical perspective, the economic impact of logistics, the engineering tool chest, and logistics as an integrating function. Logistics systems requirements and design; transportation and distribution, inventory analysis and operational support.
(Lecture-problems 3 hours) Letter grade only (A-F).

492B. Internship In Engineering (3)
Prerequisites: Major in the College of Engineering, completion of 9 units of upper division COE coursework, a 2.5 GPA overall or 2.75 GPA in the student’s major, and consent of instructor prior to registration.
Qualifying students must provide contact information for the major- or career-related assignment in private industry or in public agencies for which the course is being used. The position may be either a volunteer or paid work assignment. The instructor is required to visit the work site. Learning assignments will be arranged through the Career Development Center and the instructor. Final written report required.
Minimum of 120 hours of field experience required. Credit/No Credit grading only. May be repeated to a maximum of 6 units in different semesters. (Activity 6 hours)

498. Engineering Systems Senior Project (3)
Prerequisite: Senior Standing.
Senior Project in Engineering Systems. Design and development of a senior project. Presentation of oral and written report.
(Seminar 3 hours) Letter grade only (A-F).

GRADUATE LEVEL

511. Quality Assurance in Manufacturing (3)
Prerequisites: CE 406 with a grade of "C" or better or consent of instructor, and graduate standing.
In-depth studies of planning for quality, productivity and competitive positioning in manufacturing. Understanding the TQM process. Inspection and standardization and product reliability strategies. Case study projects.
Letter grade only (A-F). (Lecture-problems 3 hours)

532./432. Logistics Systems Engineering (3)
Prerequisite: Consent of instructor.
Logistics concepts, methods and techniques for engineering. Logistics from a historical perspective, the economic impact of logistics, the engineering tool chest, and logistics as an integrating function. Logistics systems requirements and design; transportation and distribution, inventory analysis and operational support.
(Lecture-problems 3 hours) Letter grade only (A-F).

790. Selected Topics in Engineering (1-4)
Prerequisites: MS or equivalent and formally admitted to the Ph.D. program.
Each offering is based on an area of engineering in which recent advances have been made.
Letter grade only (A-F). Topics announced in the Schedule of Classes.

795. Advanced Directed Studies (4)
Explorations of theoretical and experimental (if applicable) Engineering problems in great depth with emphasis on mathematical modeling and analysis. Students must present the findings in a formal report and a seminar.
Letter grade only (A-F).

796. Doctoral Seminar (2)
Prerequisite: Graduate Standing.
Research seminar on advanced technical fields.
May be repeated to a maximum of 4 units in different semesters. (Seminar 2 hours). Letter grade only (A-F).

797A. Preparation for Ph.D. Preliminary Examinations (4-12)
Prerequisite: Graduate Standing.
Tutorial. Limited to doctoral students who are preparing for the preliminary examinations.
ENGR 797A does not count towards the 48 units of course requirement. Credit/No Credit grading only.

797B. Preparation for Ph.D. Qualifying Examination (4-12)
Prerequisite: Graduate Standing.
Tutorial. Limited to doctoral students who are preparing for the qualifying examination.
ENGR 797B does not count towards the 48 units of course requirement. Credit/No Credit grading only.

797C. Research for Ph.D. Dissertation (4-12)
Prerequisite: Graduate Standing. Tutorial. Limited to doctoral students who are preparing or working on the dissertation research. ENGR 797C does not count towards the 48 units of course requirement. Credit/No Credit grading only.

798. Doctoral Dissertation (4-12)
Prerequisites: Successful completion of the Ph.D. preliminary examinations, research tool test, and at least 48 units of course work. A written dissertation proposal containing an outline of the research to be undertaken and references to relevant source material must be submitted. Only upon a positive recommendation a student may embark on a dissertation.
Letter grade only (A-F).

Courses (MSEM)

UPPER DIVISION

406B. Engineering Economy and Administration (3)
Prerequisite/Corequisite: ECON 300 or consent of instructor.
Engineering management principles and economic analysis: with time value of money, after-tax analysis for rate of return. Graduate students will be required to do an additional assignment.
Letter grade only (A-F).

GRADUATE LEVEL

506B. Management of Engineering Technology and Innovation (3)
Prerequisite: Graduate engineering standing.
Analysis of the principles and theory of engineering administrative organizations, information systems, management functions, decision making tools, strategies and administrative policy formulations.
Letter grade only (A-F).

507B. Engineering Project Management (3)
Prerequisite: Graduate engineering standing.
Theory and philosophies of project management, principles of internal and industrial organization planning and control systems, motion in time study, industrial statistics, industrial research as aid to decision making.
Letter grade only (A-F).
508B. Systems Engineering and Integration (3)
Prerequisite: Senior standing or consent of instructor.
Introduction to the tools and methods employed by systems engineers in the aerospace industry. Development of system functions, requirements, verification and validation, and interfaces in the context of integrated product teams and the product life cycle.
Letter grade only (A-F).

511B. Advanced Manufacturing Management Systems (3)
Prerequisite: Consent to instructor.
Letter grade only (A-F).

570B. Engineering Management Principles and Applications (3)
Prerequisite: Graduate standing, or consent of instructor.
Engineering management principles/applications. Relationships of management functions -modern products or service based companies. Technical organization in global market place. Reengineering, empowerment, concurrent engineering, and systemic thinking. Evolutionary theories of management. Strategic planning, goal setting, communication, resource distribution, etc. Team projects.
Letter grade only (A-F).

591B. Engineers to Managers – A Transition (3)
Prerequisites: Consent of instructor and graduate standing.
Engineers transitioning to management. Engineering mindset advantages and disadvantages; Successful managers; Corporations - system of people, machines, and facilities; Requirements; Inter-acting disciplines; “people skills” in non-coercive supervision; Technical managers; Managing Changes and technology; Team projects.
(Lecture-Problems 3 hours) Letter grade only (A-F).

596B. Special Projects in Engineering Management (3)
Prerequisites: Eligible for advancement to candidacy and consent of instructor.
Under faculty supervision students will pursue synthesis work, as a culminating experience, on the topics learned for the interdisciplinary MSEM degree. In consultation with the Program Advisor, an Independent Study form must be completed. An acceptable project report must be submitted.
May be repeated to a maximum of 6 units. Letter grade only (A-F).