CIVIL ENGINEERING AND CONSTRUCTION ENGINEERING MANAGEMENT
College of Engineering

Department Chair: Emelinda M. Parentela
Department Office: Vivian Engineering Center (VEC) – 104
Telephone: (562) 985-5118
Website: www.csulb.edu/colleges/coe/cecem/

Undergraduate Advisors:
Antonella Sciortino (CE), Tang-Hung Nguyen (CEM), Tariq Shehab-Eldeen (CE/CEM), Shadi Saadeh (CE)
Graduate Advisor: Steve Tsai

General Education Advising: Academic Advising - Horn Center
Administrative Support Coordinator: Ameeta Perera

Students desiring detailed information about Civil Engineering or Construction Engineering Management programs should contact the department office for referral to one of the faculty advisors.

Career Possibilities
Civil Engineer • Traffic Engineer • Sanitary Engineer
• Structural Engineer • Hydraulic Engineer • Highway Administration Engineer • Harbor Engineer • Airport Engineer • Environmental Engineer • Transportation Engineer • Drainage Design Coordinator • Technical Sales and Consulting • Field Engineer • Facilities Engineer • Plant Engineer • Project Engineer • Safety Engineer • Sales Representative • Estimator • Construction Coordinator • Procurement Construction Coordinator • Construction Inspector • Cost Analysis Coordinator • Contract Coordinator • Consultant (Some of these, and other careers, require additional education or experience. For more information, see www.careers.csulb.edu.)

Advisory and Development Councils

The Civil Engineering Advisory and Development Council
This council consists of outstanding engineers and executives from industry and government in Southern California. Its function is to form a liaison between the University and industry and to keep the administration and faculty informed of modern engineering practices. This ensures that the curricula are kept up-to-date. It also advises on placement opportunities before and after graduation.

Construction Engineering Management Advisory and Development Council
This council provides current information and guidance about industrial developments in methods, materials and techniques. Members make recommendations in course content, methods and/or facilities. Present membership in the council is made up of representatives from the different sectors of the construction industry.

Accreditation
The Bachelor of Science in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Undergraduate Programs

Bachelor of Science in Civil Engineering (130 units)

Mission
The mission of the Civil Engineering Program is to prepare students to succeed in the civil engineering profession by providing them with essential technical tools and skills and to promote the need for lifelong learning.

Educational Objectives
The Civil Engineering Program Educational Objectives are to produce graduates, who after entering the civil engineering practice will:
1. Apply knowledge of fundamental science and engineering principles and design to the solution of complex engineering projects.
2. Pursue lifelong learning through continuing education and/or advanced degrees in civil engineering or other related fields.
3. Progress to professional registration and continue to develop professionally.
4. Progress to leadership or management in engineering.

Degree Progress
Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student’s performance in the courses merits an additional semester to complete.

First-Time Freshmen: A grade of "C" or better must be achieved in MATH 122 within one calendar year.
Transfer Students: A grade of "C" or better must be achieved in MATH 123 and PHYS 151 within one calendar year.

Requirements

Lower Division:
Take all of the following:
CHEM 111A General Chemistry (5)
Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).
CE 101 Intro CE & Construction Engr Management (1)
Prerequisites: None.

CE 130 Surveying and Mapping (1)
Corequisites: CE 130L and MAE 172 or CEM 121.

CE 130L Surveying and Mapping Laboratory (1)
Corequisite: CE 130.

CE 200 Materials for Civil Engineering (2)
Prerequisites: CHEM 111A and PHYS 151 all with a grade of "C" or better; consent of department undergraduate advisor.

CE 205 Analytical Mechanics I (Statics) (3)
Prerequisite: PHYS 151 with a grade of "C" or better.
Prerequisite/Corequisite: MATH 123.

CE 206 Computer Programming & CE Applications I (2)
Prerequisites: MATH 122, PHYS 151 all with a grade of "C" or better.

ENGR 101 Intro to the Engineering Profession (1)
Prerequisite/Corequisite: MATH 111 or MATH 113 or MATH 122.

ENGR 102 Academic Success Skills (1)
Prerequisite: ENGR 101 with a grade of "C" or better.

MATH 122 Calculus I (4)
Prerequisite: Appropriate MDP placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.

MATH 123 Calculus II (4)
Prerequisite: A grade of "C" or better in MATH 122.

MATH 224 Calculus III (4)
Prerequisite: A grade of "C" or better in MATH 223 or 221.

MAE 172 Engineering Design Graphics (3)
Prerequisites: None.

PHYS 151 Mechanics and Heat (4)
Prerequisite/Corequisite: MATH 122.

Take one of the following:

BIOL 200 General Biology (4)
Prerequisite: GE Foundation requirements.

MICR 200 Microbiology for Health Professionals (4)
Prerequisites: CHEM 111A or 140 with a grade of "C" or better and GE Foundation requirements.

Take 4 units of the following:

EE 210 Electro-Magnetic Foundations in EE (3)
Prerequisite: PHYS 151 with a grade of "C" or better.
Corequisites: MATH 123, EE 210L.

EE 210L Electro-Magnetic Foundations in EE Lab (1)

PHYS 152 Electricity and Magnetism (4)
Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.

Upper Division:

Take all of the following:

CE 335 Fluid Mechanics (3)
Prerequisites: MATH 224 and C E 205 all with a grade of "C" or better.

CE 345 Geotechnical Engineering I (3)
Prerequisite: Consent of Department Undergraduate Advisor.
Corequisites: MAE 373; GEOL 370.

CE 346 Geotechnical Engineering Laboratory (1)
Prerequisite: ENGL 100 or equivalent with a grade of "C" or better.
Corequisite: CE 345.

CE 359 Structural Analysis I (3)
Prerequisite: MAE 373 with a grade of "C" or better.

CE 364 Environmental Engineering (3)
Prerequisites: CHEM 111A, BIOL 200/MICR 200 with a grade of "C" or better.
Prerequisite/Corequisite: CE 335.

CE 406 Cost Engineering and Analysis (3)
Prerequisite: GE Foundation requirements.

CE 407 Probability & Statistics in Civil Engineering (2)
Prerequisites: CE 206 and MATH 224 all with a grade of "C" or better.

CE 426 Transportation Engineering (3)
Prerequisite: CE 345 with a grade of "C" or better.
Corequisite: CE 406.

CE 437 Engineering Hydraulics (3)
Prerequisites: CE 335, MATH 370A all with a grade of "C" or better.

CE 459 Reinforced Concrete Design I (3)
Prerequisites: C E 335, MATH 370A all with a grade of "C" or better.

CE 481 Professional Practice in Civil Engineering (1)
Prerequisite: Senior standing.

CE 490 Senior Design Project (3)
Prerequisite: CE 459; completion of all 300-level engineering courses for the civil engineering major all with a grade of "C" or better and consent of department undergraduate advisor.
Prerequisite/Corequisite: CE 426, 437. Normally taken in the last year of the undergraduate program.

ECON 300 Fundamentals of Economics (3)
Prerequisites: GE Foundation requirements.

GEOL 370 Geology for Engineers (2)
Prerequisites: MAE 172, CE 130.

MATH 370A Applied Mathematics I (3)
Prerequisites: MATH 123. Not open to Freshmen.

MAE 330 Engineering Thermodynamics I (3)
Prerequisites: MATH 224, PHYS 151 or equivalent, and CHEM 111A all with a grade of "C" or better or consent of instructor.

MAE 371 Analytical Mechanics II (Dynamics) (3)
Prerequisites: CE 205, MAE 205 or CE 206 all with a grade of "C" or better.

MAE 373 Mechanics of Deformable Bodies (3)
Prerequisite: CE 205 with a grade of "C" or better.

Take six units of technical design electives from:

CE 427, 428, 438/438L, 445, 455, 456, 457, 466, 495
Take two laboratories from:

CE 326, 336, 365, 454, MAE 374
Take three units of technical electives from:

A grade of "C" or better must be achieved in the required courses below:

CHEM 111A, MATH 122, 123, 224, 370A, BIOL 200, MIRC 200, PHYS 151, ECON 300, MAE 172, MAE 373, CE 130, 130L, 200, 205, 206, 335, 345, 359, 406, 459 and 490.

Bachelor of Science in Construction Engineering Management (127 units)

Mission
The Mission of the Construction Engineering Management program is to educate and prepare students to succeed in the construction engineering management profession by providing them with essential technical, managerial and communication skills and tools which will enable them to perform current and future construction engineering management tasks and to promote the need for life-long learning.

Educational Objectives
The Construction Engineering Management program educational objectives are to produce graduates, who after
entering the construction engineering management practice with a knowledge of fundamental construction engineering management principles and current technologies, communication skills and practical construction experience, will:
1. Provide substantial contributions to the construction industry.
2. Pursue life-long learning through continuing education and/or advanced degrees in construction engineering management or other related fields.
3. Continue to develop professionally through participation in professional organizations and/or participation in professional development activities in the industry.
4. Progress towards professional certifications.

Degree Progress
Students must complete the following requirements within one calendar year of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. At the end of the year, students who have not met the requirements must either declare another major or meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete.

First-Time Freshmen: A grade of "C" or better must be achieved in MATH 111 and 113, and PHYS 100A within one calendar year.
Transfer Students: A grade "C" or better must be achieved in MATH 122 and PHYS 100A & B within one calendar year.

Requirements
Lower Division:
Take all of the following:
CE 101 Introduction to Civil Engineering and Construction Engineering Management (1)
Prerequisites: None.
CE 130 Surveying and Mapping (1)
Corequisites: CE 130L and MAE 172 or CEM 121.
CE 130L Surveying and Mapping Laboratory (1)
Corequisite: CE 130.
ENGR 101 Intro to the Engineering Profession (1)
Prerequisite/Corequisite: MATH 111 or MATH 113 or MATH 122.
ENGR 102 Academic Success Skills (1)
Prerequisite: ENGR 101 with a grade of "C" or better.
MATH 122 Calculus I (4)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
PHYS 100A General Physics (4)
Prerequisite: MATH 109 or 113 or 119A or 120 or 122.
PHYS 100B General Physics (4)
Prerequisite: PHYS 100A.
CEM 121 Construction Drawing I (2)
Prerequisites: None.
CEM 125 Fundamentals of Construction (3)
Prerequisites: None.
CEM 200 Concrete Construction (1)
Prerequisite: CEM 125 with a grade of "C" or better. Corequisite: CEM 200L.
CEM 200L Concrete Construction Laboratory (1)
Corequisite: CEM 200.
CEM 202 Probability and Statistics for CEM (3)
Prerequisite: High School Algebra.
CEM 204 Applied Mechanics-Statics (3)
Prerequisites: MATH 122 and PHYS 100A all with a grade of "C" or better.
CEM 205 Computer Systems and Programming (2)
Prerequisites: None.
CEM 225 Residential and Light Commercial Construction Practices and Estimating (3)
Prerequisites: CEM 121, 125 all with a grade of "C" or better. Corequisites: CEM 200, 200L.
BLAW 220 Introduction to Law and Business Transactions (3)
Prerequisites: None.
Take one of the following:
BLAW 220 Introduction of Law and Business Transactions (3)
Prerequisites: None
BLAW 320 Legal and Regulatory Environment of Business (3)
Prerequisites: None
Take one of the following:
CEM 201 Cost Accounting for Construction Engineering (3)
Prerequisites: None.
ACCT 201 Elementary Financial Accounting (3)
Prerequisites: None.
Upper Division:
Take all of the following:
CE 406 Cost Engineering and Analysis (3)
Prerequisite: GE Foundation requirements.
CEM 304 Applied Mechanics-Strength of Materials (2)
Prerequisite: CEM 204 with a grade of "C" or better.
CEM 315 Construction Safety (2)
Prerequisite: CEM 225 or CE 200 with a grade of "C" or better.
CEM 324 Commercial, Institutional, and Industrial Construction Practices and Estimating (3)
Prerequisites: CEM 315 with a grade of "C" or better.
CEM 335 Soil Mechanics Technology (2)
Prerequisite: CEM 304 with a grade of "C" or better. Corequisite: CEM 335L.
CEM 335L Soil Mechanics Technology Laboratory (1)
Prerequisite: CEM 304 with a grade of "C" or better. Corequisite: CEM 335.
CEM 365 Mechanical Equipment for Buildings (2)
Prerequisite: PHYS 100B with a grade of "C" or better. Corequisite: CEM 324.
CEM 375 Electrical Equipment Buildings (2)
Prerequisites: CEM 324, PHYS 100B all with a grade of "C" or better.
CEM 404 Structural Design I (2)
Prerequisite: CEM 304 with a grade of "C" or better.
CEM 421 Construction Planning and Scheduling (3)
Prerequisite: CEM 324 with a grade of "C" or better.
CEM 425 Earthwork and Civil Works Construction Practices (2)
Prerequisite: CEM 324, CE 406 with a grade of "C" or better.
CEM 426 Business and Construction Law (3)
Prerequisites: CEM 324; BLAW 220 with a grade of "C" or better.
CEM 429 Advanced Estimating and Bidding (3)
Prerequisite: CEM 315 with a grade of "C" or better. Corequisite: CEM 425.
1. The certificate may be earned concurrently with or
 Requirements
 program.
 Financial Aid unless pursued concurrently with a degree
 sciences essential for managing technical functions.
 depth of technical knowledge in facilities operations-oriented
 project management. This program provides graduates with a
 facilities development and design, plant layout, and facilities
 in plant engineering, industrial construction coordination,
 Certificate in Facilities Operations
 department.
 to graduation, be certified and approved by the faculty of the
 two years of college. The fieldwork must be completed prior
 responsibility usually given to those who have completed
 technician or higher which affords the opportunity to exercise
 agency. The student must hold a position equivalent to a
 of employment in an approved industry or governmental
 less than three months full-time (or equivalent part-time)
 Heavy Construction Emphasis:
 CEM 374, 409, 432, 433, 434, 436
 A grade of "C" or better must be achieved in all required
 courses listed below:
 PHYS 100A and B, MATH 122, CEM 121, 125, 200, 200L, 204, 225, 304, 315, 324, 421, 429, 431, 490; CE 130, 130L, 406, MGMT 300; ACCT 201; BLAW 220 or 320.
 Fieldwork Requirements
 Fieldwork experience is required for the BS in
 Construction Engineering Management, consisting of no
 less than three months full-time (or equivalent part-time)
 of employment in an approved industry or governmental
 agency. The student must hold a position equivalent to a
 technician or higher which affords the opportunity to exercise
 responsibility usually given to those who have completed
 two years of college. The fieldwork must be completed prior
to graduation, be certified and approved by the faculty of the
department.
 Certificate in Facilities Operations
 Not accepting new students as of Fall 2012.
 The certificate is designed to qualify the graduate to serve
 in plant engineering, industrial construction coordination,
 facilities development and design, plant layout, and facilities
 project management. This program provides graduates with a
 depth of technical knowledge in facilities operations-oriented
 technical courses, as well as the knowledge of behavioral
 sciences essential for managing technical functions.
 Please be aware that this program is not eligible for
 Financial Aid unless pursued concurrently with a degree
 program.
 Requirements
 1. The certificate may be earned concurrently with or
 subsequent to the baccalaureate degree.
 2. This program is open to all majors who have fulfilled
 the prerequisites as stated below.
 3. Requires a total of 25 units as specified below.
 A. The completion of supporting technical courses chosen in
 consultation with an advisor.
 B. Take 25 units selected from the following:
 CE 406 Cost Engineering and Analysis (3)
 Prerequisite: GE Foundation requirements.
 CEM 121 Construction Drawing I (2)
 Prerequisites: None.
 CEM 320 Operations Management in Contemporary
 Organizations (3)
 Prerequisites: MGMT 300, ENGR 310 all with a grade of "C" or
 better.
 CEM 374 Plant Planning and Layout (2)
 Prerequisite: CEM 324 with a grade of "C" or better or consent of
 instructor.
 CEM 409 Directed Studies in Construction Engineering
 Management (1-3)
 Prerequisites: Senior standing in CEM or consent of instructor.
 CEM 431 Construction Cost Control (3)
 Prerequisites: CE 406 and CEM 421 all with a grade of "C" or
 better.
 CEM 432 Facility Administration (3)
 Prerequisite: CEM 421 with a grade of "C" or better.
 CEM 433 Facility Finance Management (3)
 Corequisite: CEM 432.
 CEM 434 Facility and Property Management (3)
 Prerequisite: CEM 433 with a grade of "C" or better.
 CEM 436 Facility Operations Management (3)
 Prerequisite: CEM 432 with a grade of "C" or better.
 4. Any deviation from this program requires the written permission
 of the program advisor.

GRADUATE PROGRAMS

Master of Science in Civil Engineering
Mission
The mission of the civil engineering graduate program at
CSULB is to provide a high-quality educational experience and
the technical specialization required to become successful leaders
in industry and the society, to engage students in innovative
practical research and encourage them to pursue advanced
degrees and lifelong learning.

Program Objectives
Graduates of the MSCE program will:
1. have technical competency in an area of specialization.
2. have technical knowledge and skills needed to conduct
 independent and/or innovative research.
3. keep current with state of the art technologies and
 advancements in a specialized technical area.

Prerequisites
1. A bachelor’s degree in an ABET accredited curriculum in civil
 engineering with a minimum GPA of 2.8; or
2. A bachelor’s degree with a minimum GPA of 2.8 in engineering,
 a natural science or other appropriate discipline with the
 requirement that essential undergraduate prerequisites in civil
 engineering are satisfied;
3. The general Graduate Record Examination (GRE) is required and appropriate level of competency will be determined by the Department.

4. Graduate students must consult with the graduate advisor for information concerning procedures and requirements for appropriate approval of their courses of study prior to enrolling in their graduate programs.

5. The Graduation Writing Assessment Requirement (GWAR) must be met during the first semester in residence. Failure to attempt to fulfill the GWAR during the first semester will prevent registration in engineering courses in subsequent semesters.

Advancement to Candidacy
1. Removal of all undergraduate deficiencies as determined by the Department Graduate Studies Committee;
2. Completion of at least 12 graduate units at CSULB; minimum GPA of 3.0; currently enrolled;
3. Fulfillment of the Graduation Writing Assessment Requirement (GWAR).

Requirements
Completion of a minimum of 30 units beyond the bachelor’s degree and graduate coursework as follows:
1. A minimum of 24 units in engineering, probability and statistics and mathematics courses with 18 units of 500-600-level courses in Civil Engineering. Within these 18 units a student may include six units of CE 698 or three units of CE 697.
 - Students are required to complete successfully either:
 697 Directed Studies (1-3)
 698 Thesis (2-6)
2. Six units of electives selected from approved graduate courses in appropriate subjects;
3. Fulfill one of the following alternatives:
 I - Write and present orally a thesis to be approved by the thesis committee;
 II - Pass a written comprehensive examination on coursework in the student’s program.

Graduate Certificate in Waste Engineering and Management
Not accepting new students as of Fall 2012.
This 24-unit program is conducted in cooperation with local engineering consulting firms and government agencies and could accommodate an internship of three units through directed study (CE 697). This certificate may be taken (1) by a graduate as a matriculated student, (2) admitted to a CSULB graduate degree program, or admitted as an unclassified graduate student.
A grade of “C” or better must be obtained in all courses applied to the certificate, with an overall G.P.A. of 3.0. Courses taken on Credit/No Credit or Audit basis will not apply to the certificate. Graduate students taking courses in this program are reminded that grades received will be included in calculations of the M.S. requirement.
Please be aware that this program is not eligible for Financial Aid unless pursued concurrently with a degree program.

Requirements
1. Completion of an accredited baccalaureate degree in engineering or a related scientific discipline, with appropriate prerequisites to be met.

2. Take both of the following courses:
 CE 543 Waste Management & Landfill Engr (3)
 Prerequisite: Graduate standing or consent of instructor.
 PPA 590 Topics in Public Policy & Administration (3)
 Prerequisites: None.
 Take a minimum of 9 units (electives) from the following: C E 504, 562, 563, 564, 566, 567; CH E 555, and 585.
 Normally, at least one of these courses should be from non-Civil Engineering offerings.
3. Fulfillment of the Graduation Writing Assessment Requirement (GWAR).
4. Filing of a program application card with Admissions and Records, and filing for the certificate at least one semester prior to completion.

Civil Engineering Courses (C E)

LOWER DIVISION
101. Introduction to Civil Engineering and Construction Engineering Management (1)
Civil engineering and construction engineering management as a profession. Current trends and challenges, ethical, social and environmental issues in professional practice. Professional organizations and licensure. Communication and lifelong learning skills for professional practice.
Letter grade only (A-F). (Lecture-problems 1 hour)

130. Surveying and Mapping (1)
Corequisites: CE 130L and MAE 172 or CEM 121.
Letter grade only (A-F). (Lecture-Problems 1 hour)

130L. Surveying and Mapping Laboratory (1)
Corequisite: CE 130.
Fundamentals of surveying methods as applied to construction layout. Use of level and total station for location and control of structures, vertical and horizontal control, and area determination.
Letter grade only (A-F). Not open for credit to students with credit in CE 131. (Laboratory 3 hours)

200. Materials for Civil Engineering (2)
Prerequisites: CHEM 111A and PHYS 151 all with a grade of "C" or better and consent of department undergraduate advisor.
Basic properties of materials in civil engineering, including concrete, masonry, steel, wood, asphalt and composites.
Letter grade only (A-F). (Lecture 1 hour, Laboratory 3 hours)

205. Analytical Mechanics I (Statics) (3)
Prerequisite: PHYS 151 with a grade of "C" or better.
Prerequisite/Corequisite: MATH 123.
Application of the mechanics of equilibrium to force systems using analytical and graphical solutions of problems involving structures and machines.
Letter grade only (A-F). (Lecture 2 hours, Activity 2 hours)

206. Computer Programming and Civil Engineering Applications I (2)
Prerequisites: MATH 122, PHYS 151 all with a grade of "C" or better.
Introduction to programming and application of computers to elementary civil engineering problems.
Letter grade only (A-F). (Lecture-Problems 1 hour, Laboratory 3 hours)
326. GIS Laboratory for Civil Engineers (1)
Prerequisites: CE 130, 130L, 206 all with a grade of "C" or better.
Fundamentals of geographic information systems (GIS); spatial and
network analyses. Hands-on application of GIS software to solve
civil engineering problems.
(Laboratory 3 hours) Letter grade only (A-F).

335. Fluid Mechanics (3)
Prerequisites: MATH 224 and C E 205 all with a grade of "C" or
better.
Properties of fluids, fluid statics, fluid dynamics, dynamic similitude,
flow of compressible and incompressible fluids in closed conduits,
uniform flow in prismatic open channels.
Letter grade only (A-F). (Lecture-Problems 3 hours)

336. Fluid Mechanics Laboratory (1)
Prerequisite: ENGL 100 or equivalent all with a grade of "C" or
better.
Prerequisite/Corequisite: CE 335.
Experiments in and study of the phenomena of fluid flow.
Letter grade only (A-F). (Laboratory 3 hours)

345. Geotechnical Engineering I (3)
Corequisites: MAE 373; GEOL 370.
Prerequisite: Consent of Department Undergraduate Advisor.
Soil mechanics applied to engineering structures. Soil exploration,
identification, classification, drainage, stability and bearing capacity.
Letter grade only (A-F). (Lecture-Problems 3 hours)

346. Geotechnical Engineering Laboratory (1)
Prerequisite: ENGL 100 or equivalent all with a grade of "C" or
better.
Corequisite: CE 345.
Laboratory investigation and experiments in the phenomena of soil
mechanics.
Letter grade only (A-F). (Laboratory 3 hours)

359. Structural Analysis I (3)
Prerequisite: MAE 373 with a grade of "C" or better.
Analysis of structures including trusses, beams, and frames,
conjugate beam, virtual work, energy methods, approximate
methdods, and influence lines. Use of code based finite element
computer programs in analysis of frame and truss type structures.
Letter grade only (A-F). (Lecture-Problems 3 hours)

364. Environmental Engineering I: Fundamentals (3)
Prerequisites: CHEM 111A, BIOL 200/MICR 200 all with a grade of
"C" or better.
Prerequisite/Corequisite: CE 335.
Introduction to the fundamental physical, chemical and biological
processes affecting air and water quality. Models of transport
and transformation of impurities. Emphasis on theory underlying the
design of water quality control technologies.
Letter grade only (A-F). (Lecture-Problems 3 hours)

365. Environmental Engineering Laboratory (1)
Prerequisite/Corequisite: CE 364.
Experiments in routine water quality analysis and environmental
engineering applications.
Letter grade only (A-F). (Laboratory 3 hours)

370. Analytical Mechanics (3)
Prerequisites: PHYS 151 with a grade of "C" or better.
Prerequisite/Corequisite: MATH 123.
Fundamental principles of statics, kinematics and kinetics, with
application to idealized structures and systems.
Intended for Electrical Engineering majors. Not open for credit to
Civil or Mechanical Engineering majors. Letter grade only (A-F).
(Lecture-Problems 3 hours)

404. Laboratory Techniques (1)
Prerequisites: ENGL 100 or equivalent with a grade of "C" or
better, senior standing in Civil Engineering and consent of
instructor.
Study in the techniques of organizing and directing of the civil
engineering laboratory.
May be repeated to maximum of 3 units. Letter grade only (A-F).
(Conference 1 hour, Laboratory 3 hours)

405. Selected Topics in Civil Engineering (3)
Prerequisites: Senior standing in civil engineering and consent of
instructor.
Selected topics from recent advances in civil engineering. Course
content will vary from year to year.
Letter grade only (A-F). May be repeated to a maximum of 6 units.
Topics announced in Schedule of Classes. (Lecture-Problems 3 hours)

406. Project Cost-Benefit Analysis (3)
Prerequisite: GE Foundation requirements.
Systematic evaluation of the economic and social benefits
and costs of projects. Decision-making in an environment of
limited resources, environmental and economic constraints, and
uncertainty. The economy of multi-year projects, selection among
competing independent alternatives, before and after tax analyses,
replacement economy and inflation.
Letter grade only (A-F). (Lecture-Problems 1 hour, Lab 3 hrs)

407. Probability and Statistics in Civil Engineering (2)
Prerequisites: CE 206 and MATH 224 all with a grade of "C" or
better.
Analysis of uncertainties, and applications of the basic theories of
probability and statistics in civil engineering areas of geotechnical,
environmental, water resources, structural and transportation
engineering.
Letter grade only (A-F). (Lecture-problems 1 hour, Lab 3 hrs)

408. Special Problems (1-3)
Prerequisite: Senior standing in civil engineering.
Assigned topics in technical literature or laboratory projects and
report on same.
Letter grade only (A-F).

426. Transportation Engineering (3)
Prerequisite: CE 345 with a grade of "C" or better.
Corequisite: CE 406.
Operation of various modes of transportation; Characteristics of
the driver, pedestrian, vehicle and the road; fundamental principles
of traffic flow; introduction to intersection design and control,
planning, and geometric design; transportation issues and safety.
Letter grade only (A-F). (Lecture-Discussion 3 hours)

427. Highway Design (3)
Prerequisite: CE 345 with a grade of "C" or better.
Geometric design of highways and streets. Route location and
earthwork computation. Introduction to roadside and pavement
design. Design problems in highway engineering.
Letter grade only (A-F). (Lecture-Problems 3 hours)

428. Highway Engineering Materials (3)
Prerequisites: CE 200 and 345 all with a grade of "C" or better.
Design and properties of highway materials, including
aggregates, asphalt binder, and mixtures. Hot Mix Asphalt (HMA)
aggregate gradation, blending procedure, volumetrics, design,
plant operation, and lay down. Superpave binder testing and
specifications.
(Lecture 2 hours, Laboratory 3 hours) Letter grade only (A-F).
Civil Engineering Courses (C E)

429. Traffic Engineering (2)
Corequisite: CE 426, 429L.

Capacity and level of service analyses of highway facilities. Intersection signal timing design. Introduction to traffic control devices. Volume, speed and delay studies. Use of traffic data for design, planning and operational levels of analyses.

Letter grade only (A-F). Graduate students required to do extra projects. (Lecture-Problems 3 hours)

429L. Traffic Engineering Laboratory (1)
Corequisites: CE 426, 429

Laboratory activities on traffic flow theory, capacity and level of service analyses, signal timing, parking lot design, and travel demand forecasting; traffic volume, speed and delay studies. Use of traffic engineering software.

(Laboratory 3 hours) Letter grade only (A-F). Not open for credit to students with credit in CE 430.

435. Hydrology and Water Resources Engineering (3)
Prerequisite: C E 335 with a grade of "C" or better.

Fundamental surface and ground water hydrology concepts and quantitative methods. Selected topics and procedures of the hydrological cycle. Planning, development and management of water resource surface systems.

Letter grade only (A-F). (Lecture-Problems 3 hours)

437. Engineering Hydraulics (3)
Prerequisites: C E 335, MATH 370 A all with a grade of "C" or better.

Theory and analysis of steady uniform and non-uniform flow in open conduits. Energy and momentum principles, critical flow computations and applications, design of channels, computations of gradually varied, spatially varied and rapidly varied flows.

Letter grade only (A-F). (Lecture-Problems 3 hours)

438. Hydraulic Engineering Design I (2)
Corequisites: CE 437, 438L

Application of hydraulic principles to the design of dams, water courses, water systems and their related structures and devices.

Letter grade only (A-F). (Lecture 2 hours)

438L. Hydraulic Design I Laboratory (1)
Corequisite: CE 438

Computer laboratory applications to the design of water courses, water systems and their related structures and devices

Letter grade only (A-F). (Laboratory 3 hours)

439. Fundamentals of Groundwater Flow and Contaminant Transport (3)
Corequisite: CE 437

(Lecture-Discussion 3 hours) Letter grade only (A-F).

445. Geotechnical Engineering II (3)
Prerequisites: CE 345, 346 all with a grade of "C" or better.

Methods of design and construction of various geotechnical engineering projects utilizing theory of soil mechanics.

Letter grade only (A-F). (Lecture-Problems 3 hours)

446./542. Geotechnical Projects (3)
Prerequisite: CE 345 with a grade of "C" or better.

Design and problem solving oriented geotechnical projects utilizing soil mechanics theory and experimental methods according to the state-of-the-art practice.

Letter grade only (A-F). Graduate students required to do additional readings and write a research term paper to deal with current topics in geotechnical engineering. (Lecture-Problems 3 hours)

454. Structures Laboratory (1)
Prerequisite: CE 359 with a grade of "C" or better.

Corequisite: CE 459.

Laboratory examination of structural concepts. Utilize computer simulation modeling techniques in combination with structural tests.

Letter grade only (A-F). (Lecture 3 hours) Not open for credit to students with credit in CE 491.

455. Structural Steel Design (3)
Prerequisite: CE 359 with a grade of "C" or better.

Detailed design of components with typical codes and specifications.

Letter grade only (A-F). (Lecture-Problems 3 hours)

456. Timber Design (3)
Prerequisite: CE 359 with a grade of "C" or better.

Design of various structural elements made of wood material subjected to both vertical and lateral loads. Application of current building codes and specifications in timber design.

Letter grade only (A-F). (Lecture-Problems 3 hours)

457./517. Reinforced Masonry Design (3)
Prerequisite: CE 359 with a grade of "C" or better.

Letter grade only (A-F). Graduate students required to do a design project and assigned readings from journals and research papers. (Lecture-Problems 3 hours)

458. Structural Analysis II (3)
Prerequisite: CE 359 with a grade of "C" or better.

Solution of indeterminate truss and frame structures using moment distribution and slope deflection methods. Introduction to matrix methods. Energy theorems and virtual work principles. Use of code based finite element computer programs in the analysis of indeterminate structural systems.

Letter grade only (A-F). (Lecture-Problems 3 hours)

459. Reinforced Concrete Design I (3)
Prerequisites: C E 200 and 359 all with a grade of "C" or better.

Theory and design of structural elements of reinforced concrete, analysis by working stress and ultimate strength design theories.

Letter grade only (A-F). (Lecture-Problems 3 hours)

464. Environmental Engineering II: Unit Processes (3)
Prerequisites: CE 335 and 364 all with a grade of "C" or better.

Civil engineering applications of the fundamentals of chemical reactions, kinetics of biochemical systems, gas transfer systems, liquid/solid separations, solubility equilibria, adsorption, ion exchange and membrane processes.

Letter grade only (A-F). (Lecture-Problems 3 hours)

466. Environmental Systems Design (3)
Prerequisite: CE 364 with a grade of "C" or better.

Principles of environmental systems design. Design and planning of systems for water distribution, wastewater collection and storm water management.

Letter grade only (A-F). (Lecture-Problems 3 hours)

481. Professional Practice In Civil Engineering (1)
Prerequisite: Senior standing.

Topics related to practice of civil engineering profession. Professional society meetings and readings.

Letter grade only (A-F). (Lecture-Problems 1 hour)
490. Senior Design Project (3)
Prerequisite: CE 459; completion of all 300-level engineering courses for the civil engineering major all with a grade of "C" or better and consent of department undergraduate advisor. Prerequisite/Corequisite: CE 426, 437.
Normally taken in the last year of the undergraduate program. A supervised design group project, incorporating all aspects from concept to completed design and oral presentations. Technical aspects, social, environmental, and economic issues considered. Ethical concepts discussed.
Letter grade only (A-F). (Lecture-Problems 2 hrs, Design lab 3 hrs)

495. Seismic Design I (3)
Prerequisites: CE 459 with a grade of "C" or better.
Elements of lateral-force design in steel, concrete, masonry, and timber structures. Application of current building codes.
Letter grade only (A-F). (Lecture 3 hours)

497. Senior Problem Directed Studies (2)
Prerequisites/Corequisites: CE 406, 481, 490.
Directed study on assigned topics or lab/field studies practicum and report on same.
Letter grade only (A-F).

GRADUATE LEVEL

500. Engineering Analysis I (3)
Prerequisites: MATH 370A with a grade of "C" or better.
Letter grade only (A-F). (Lecture-Problems 3 hours)

501. Engineering Analysis II (3)
Prerequisite: MATH 370A with a grade of "C" or better.
Analysis of engineering mechanics by matrix theory and complex variables; introduction to numerical techniques.
Letter grade only (A-F). (Lecture-Problems 3 hours)

502. Finite Element Method and Applications (3)
Prerequisite: CE 458 with a grade of "C" or better or consent of instructor
(Lecture-Problems 3hours) Letter grading only (A-F).

503. Selected Topics in Civil Engineering (3)
Prerequisites: Graduate standing and consent of instructor.
Selected topics, with laboratory work required, from the most recent developments in civil engineering.
Letter grade only (A-F). May be repeated to a maximum of 6 units. Topics announced in the Schedule of Classes. No more than 6 units of CE 503 or CE 504 may be counted for the Master’s Degree. (Lecture-Problems 2 hours, Laboratory 3 hrs)

504. Selected Topics in Civil Engineering (3)
Prerequisite: Graduate standing or consent of instructor.
Selected topics from recent developments in civil engineering.
Letter grade only (A-F). May be repeated to a maximum of 6 units. Topics announced in the Schedule of Classes. No more than 6 units of CE 503 and/or CE 504 may be counted for the master’s degree. (Lecture-Problems 3 hrs)

508. Probabilistic and Statistical Methods in Engineering Applications (3)
Prerequisite: Graduate standing or consent of instructor.
Civil Engineering applications of nondeterministic models and decision theory. Applications of proven statistical computer programs.
Letter grade only (A-F). (Lecture-Problems 3 hours)

509. Computational Methods in Civil Engineering (3)
Prerequisite: Graduate standing or consent of instructor.
Numerical analysis and computer methods applied to various areas of civil engineering. Application of proven computer methods, including special problem-oriented languages.
Letter grade only (A-F). (Seminar 3 hrs)

516. Timber Design II (3)
Prerequisite: CE 359 and 456 all with a grade of "C" or better.
Letter grade only (A-F). (Lecture-Problems 3 hours)

517./457. Reinforced Masonry Design (3)
Prerequisite: CE 359 with a grade of "C" or better.
Letter grade only (A-F). Graduate students required to do a design project and assigned readings from journals and research papers. (Lecture-Problems 3 hours)

520. Seaport Planning and Design (3)
Prerequisite: CE 426 with a grade of "C" or better or consent of instructor.
Planning and design of seaports and facilities as access systems. Support transportation, use analysis and ocean transport crafts. Site selection and comprehensive planning.
Letter grade only (A-F). (Lecture-Problems 3 hours)

522. Transportation Planning (3)
Prerequisite: CE 426 with a grade of "C" or better or consent of instructor.
Planning of transportation facilities in urban setting; application of travel forecasting and analytical models in the planning process; evaluation of transportation alternatives and impacts; transportation system and demand management techniques.
Letter grade only (A-F). (Lecture-Problems 3 hours)

526. Pavement Engineering (3)
Corequisite: CE 427 or consent of instructor.
Aggregate, binder systems. Theory and design of pavement structures.
Letter grade only (A-F). (Lecture-Problems 3 hours)

528. Advanced Highway Materials (3)
Prerequisite: CE 428 with a grade of "C" or better or consent of instructor.
Hot mix asphalt design methods and lay down methods. Distress identification and rehabilitation procedures of highway materials. (Lecture-Discussion 3 hours) Letter grade only (A-F)

529. Advanced Traffic Engineering (3)
Prerequisite/Corequisite: CE 426 or consent of instructor.
Analysis of arterial streets traffic operations. Queuing Analysis; Signal timing coordination and optimization; Use of traffic optimization and simulation computer models to solve problems.
Letter grade only (A-F). (Lecture-Problems 3 hours)
Civil Engineering Courses (C E)

530. Groundwater Flow: Principles and Modeling (3)
Prerequisite: CE 437 with a grade of "C" or better or consent of instructor.

532. Sediment Transportation (3)
Prerequisite: C E 437 with a grade of "C" or better.
Phenomena of sediment transportation related to streams and marine environments. Letter grade only (A-F). (Lecture-Problems 3 hours)

533. Groundwater Contaminant Transport: Principles and Modeling (3)
Prerequisites: CE 437, 530 all with a grade of "C" or better or consent of instructor.

535. Advanced Hydrology (3)
Prerequisite: Graduate standing or consent of instructor.
Theory and application of surface hydrology. Hydrologic statistics, dynamic wave routing, frequency analysis and risk analysis. Simulation of design flows, flood forecasting, flood plain analysis and hydrologic design. Mathematical models, numerical methods in analysis and evaluation. Letter grade only (A-F). (Lecture-Problems 3 hours)

536. Urban Surface Water Management (3)
Prerequisite: CE 437 with a grade of "C" or better or consent of instructor.
Planning and design of facilities to control flooding, erosion, sedimentation, and non-point source pollution for urban storm water runoff management. Presentation of analysis and design methodologies, structural and non-structural measures for management, and master planning principles. Letter grade only (A-F). (Lecture-Problems 3 hours)

538. Hydraulic Engineering Design II (3)
Prerequisites: C E 437, 438 all with a grade of "C" or better or consent of instructor.
Design of water supply networks, hydraulic transitions, controls and structures. Hydraulic power conversion. River engineering. Water resources systems. Letter grade only (A-F). (Lecture-Problems 3 hours)

542/446. Geotechnical Projects (3)
Prerequisite: CE 345 with a grade of "C" or better.
Design and problem solving oriented geotechnical projects utilizing soil mechanics theory and experimental methods according to the state-of-the-art practice. Letter grade only (A-F). Graduate students required to do additional readings and write a research term paper to deal with current topics in geotechnical engineering. (Lecture-Problems 3 hours).

543. Waste Management and Landfill Engineering (3)
Prerequisite: Graduate standing or consent of instructor.
Advanced principles and practices of landfill engineering for waste management and subsurface flow problems. Presentation of research and case studies in geotechnical aspects of waste management and landfill engineering. Letter grade only (A-F). (Lecture-Problems 3 hours)

546. Theory and Design of Foundation Structures (3)
Prerequisite: CE 345 with a grade of "C" or better or consent of instructor.
Foundation, explorations, stress and deformation relationships and design of various footings, piles, piers and caissons. Analysis of lateral loads and design of retaining structures, machinery foundations and foundation dewatering. Letter grade only (A-F). (Lecture-Problems 3 hours)

547. Soil Dynamics (3)
Prerequisite: CE 345 with a grade of "C" or better or consent of instructor.
Theories and field behaviors of dynamically loaded foundation systems and soil responses with emphasis on engineering applications. Letter grade only (A-F). (Lecture-Problems 3 hours)

548. Geotechnical Engineering III (3)
Prerequisite: C E 435 with a grade of "C" or better or consent of instructor.
Stress-strain time relationship of soils. Theory and methods of analysis with special emphasis on the applications and limitations in soil engineering. Letter grade only (A-F). (Lecture-Problems 3 hours)

551. Prestressed Concrete (3)
Prerequisite: C E 459 with a grade of "C" or better.
Principles of prestressed concrete. materials used, applications to structural design, review of existing specifications. Letter grade only (A-F). (Lecture-Problems 3 hours)

552. Theory of Plates and Shells (3)
Prerequisite: Completion of C E Graduate MATH Requirement.
Review of theory of elasticity; formulation of general equation of bending of thin elastic plates; methods of obtaining exact and approximate solutions; membrane and bending theories of shells with emphasis on cylindrical shells and shells of revolution. Letter grade only (A-F). (Lecture-Problems 3 hours)

553. Behavior and Design of Steel Structures (3)
Prerequisite: C E 455 with a grade of "C" or better.
Study of torsion, unsymmetrical bending, stability. Plastic design, code provisions and commentary. Design of complete structural systems in steel. Letter grade only (A-F). (Lecture-Problems 3 hours)

554. Analysis and Design with Composite Materials (3)
Prerequisite: Graduate standing or consent of instructor.
Mechanics of composite materials with design applications in aerospace, civil engineering and construction. Lab experiments on composite samples. Project required with canned computer programs. (Lecture-Problems 3 hrs) Letter grade only (A-F).

555. Seismic Design II (3)
Prerequisite/Corequisite: CE 495 or consent of instructor.
Characteristics of earthquakes and seismic response spectra, seismic load resisting systems, mechanisms of nonlinear deformation and seismic fuses. Advanced seismic analysis and design of irregular buildings and other structures. Seismic behavior of base isolation structures. (Lecture-Problems 3 hours) Letter grading only (A-F).

557. Advanced Structural Analysis (3)
Prerequisite: C E 458 with a grade of "C" or better or consent of instructor.
Virtual forces and displacements, strain energy and complementary energy. Force and displacement matrix methods. Computer
applications to planar and space frames, trusses, floor beams and shear wall systems.

(Lecture-Problems 3 hours) Letter grade only (A-F).

558. Dynamics of Structures (3)
Prerequisite: CE 458 with a grade of "C" or better or consent of instructor.
Response of structures and structural components having one or more degrees of freedom. Damping and inelastic action; earthquake and nuclear blasts, dynamic resistance of structural elements and structures, elastic and inelastic response of structures.
(Lecture-Problems 3 hours) Letter grade only (A-F).

562. Water and Wastewater Treatment Design I (3)
Prerequisite: CE 364 with a grade of "C" or better or consent of instructor.
Design of physical and chemical processes for water and wastewater treatment, with emphasis on water treatment plants.
(Lecture-Problems 3 hours) Letter grade only (A-F).

563. Water and Wastewater Treatment Design II (3)
Prerequisite: CE 562 with a grade of "C" or better or consent of instructor.
Design of chemical and biological processes for water and wastewater treatment with emphasis on wastewater treatment.
(Lecture-Problems 3 hours) Letter grade only (A-F).

564. Environmental Health Engineering (3)
Prerequisite: CE 364 with a grade of "C" or better or consent of instructor.
(Lecture-Problems 3 hours) Letter grade only (A-F).

566. Unit Operations in Environmental Engineering (3)
Prerequisite: CE 364 with a grade of "C" or better or consent of instructor.
Civil engineering applications of the fundamentals of chemical reactions, kinetics of biochemical systems, gas transfer operations, liquid/solid separations, solubility equilibria, adsorption, ion exchange and membrane processes.
(Lecture-Problems 3 hours) Letter grade only (A-F).

567. Liquid and Solid Waste Project Planning and Management (3)
Prerequisite: CE 364 with a grade of "C" or better or consent of instructor.
The presentation of research and case studies of liquid and solid waste project planning and management.
Letter grade only (A-F). (Lecture-Problems 3 hours)

570. Engineering Management Principles and Practices (3)
Prerequisites: CE 406 with a grade of "C" or better, graduate standing or consent of instructor.
Transition of engineers into management. Analysis of technical manager's functions at lower and middle levels as support to corporate management. Principles of engineering management and applications to private and public sector organizations. Case studies of practices in different technical organizations.
Letter grade only (A-F). (Lecture 3 hours)

571. Construction Planning and Cost Control (3)
Prerequisite: Graduate standing or consent of instructor.
Planning, scheduling and resource allocation for a complex construction project. Topics include traditional critical path method, advanced computer expert systems and optimization techniques for construction planning and cost control.
Letter grade only (A-F). (Lecture-Problems 3 hours)

573. Engineering Specifications, Law and Contracts (3)
Prerequisite: Graduate standing or consent of instructor.
Application of law of contracts to construction contracts. Legal matters of concern to engineers.
(Lecture-Problems 3 hours) Letter grade only (A-F).

574. Methods, Analysis and Design of Construction Operations (3)
Prerequisite: CE 571 with a grade of "C" or better or consent of instructor.
Equipment, methods, analysis and design of a construction operation, from site work improvement and data acquisition to modeling and design. Particular attention will be paid to interfacing between design and construction activities and work method development, productivity and safety.
(Lecture-Problems 3 hours) Letter grade only (A-F).

576. Construction Organization and Management (3)
Prerequisite: Graduate standing or consent of instructor.
An introduction to construction organization, control concepts and labor, emphasizing the business aspects of construction engineering management. Topics include legal framework, finance in construction management, labor, accounting and other decision making in the construction business.
(Lecture-Problems 3 hours) Letter grade only (A-F).

577. Business Aspects and Finance of Construction Projects (3)
Prerequisite: CE 406 with a grade of "C" or better or consent of instructor.
Economics and business aspects in construction, financing structure, methodology, and project financial evaluation. Emphasis is on financial assets in property acquisition, development, construction, and project management.
(Lecture-Problems 3 hours) Letter grade only (A-F).

578. Management of Advanced Technologies in Construction (3)
Prerequisite: Consent of instructor.
New development of advanced technology as applied to construction industry. Productivity and competitiveness in construction on the basis of new technology. Comparison of construction innovation in the U.S., Japan, and other countries.
(Lecture-problems 3 hours) Letter grade only (A-F).

581. Sustainability and Green Construction (3)
Prerequisite: Graduate standing or consent of instructor.
Comprehensive coverage of the green building design and construction practices through high-performance, market-leading design, construction, and operation practices. Presents the green operations and management of new construction and major renovation projects, with emphasis on green building rating systems.
(Lecture 3 hours) Letter grade only (A-F).

582. Management of Productivity and Quality (3)
Prerequisite: CE 570 with a grade of "C" or better or consent of instructor.
System approaches to quality and productivity in construction. Total Quality Management (TQM) in construction engineering and management. Investigation of methods and strategies for improving competitiveness at the company level. Domestic and international competitiveness in the construction business.
(Lecture-Problems 3 hours) Letter grade only (A-F).

585. Utility Rehabilitation and Construction (3)
State of infrastructure systems with a focus on underground facilities, diagnostic and evaluation techniques of underground utility pipes, planning, equipment, materials and methods for rehabilitation and construction of sewer and water mains using Trenchless (i.e. NO-DIG) Technology.
(Lecture-Problems 3 hours). Letter grade only (A-F).
Civil Engineering Courses (C E)

602. Seminar in Civil Engineering (3)
Prerequisite: Graduate Standing or consent of instructor.
Presentation of research in special fields of structures, transportation, environmental, urban, geotechnical, water resources, or construction engineering management. May be repeated once for credit. No more than six units of CE 602.
(Lecture-Problems 3 hours) Letter grade only (A-F).

629. Traffic Operations (3)
Prerequisite: CE 429 or 529 all with a grade of "C" or better, or consent of instructor.
Principles of traffic flow. Highway traffic operations. Evaluation of quality of traffic operations including long-range impact on efficient use of the systems and on safety. Identification and evaluation of measures of effectiveness. Travel demand management strategies and intelligent transportation system applications.
(Lecture-Problems 3 hours) Letter grade only (A-F).

630. Mathematical Modeling in Hydraulic Engineering (3)
Prerequisite: CE 437 with a grade of "C" or better or consent of instructor.
Numerical techniques for solving hydraulic problems in water supply, waste water disposal and storm drainage systems. Prediction of important parameters by mathematical modeling on problems encountered in artificial channels, rivers, estuaries and marine environments.
(Lecture-Problems 3 hours) Letter grade only (A-F).

640./740. Mathematical Modeling in Geotechnical Engineering (3)
Prerequisite: Graduate standing or consent of instructor.
Mathematical modeling techniques used in geotechnical engineering. Application of proven computer programs.
M.S. students register in CE 640; Ph.D. students register in CE 740. Ph.D. students will be required to complete a more rigorous computer project.
(Lecture-Problems 3 hours) Letter grade only (A-F).

696. Research Methods (1)
Prerequisite: Candidacy or consent of instructor.
Bibliographical and library techniques and resources. Preparation and presentation of theses and directed studies technical papers.
Letter grade only (A-F).

697. Directed Studies (1-3)
Prerequisite: Graduate standing. Corequisite: CE 696 or written consent of directed studies advisor.
MSCE and MSE degree candidates in Civil Engineering and Interdisciplinary Areas need to have either CE 697 or CE 698 as their program requirement. Theoretical and experimental problems in civil engineering requiring intensive analysis.
Letter grade only (A-F).

698. Thesis (2-6)
Prerequisite: Admission to candidacy for degree of master of science in civil engineering. Corequisite: C E 696 or written consent of faculty advisor.
Planning, preparation and completion of a thesis and/or project in the field of civil engineering.
Letter grade only (A-F). May be repeated to a maximum of 6 units.

699. Thesis (3-9)
Prerequisite: Admission to candidacy for degree of Civil Engineer. Corequisite: C E 696 or written consent of faculty advisor.
Planning, preparation and completion of a thesis in the field of civil engineering practice.
Letter grade only (A-F). May be repeated to a maximum of 9 units.

602. Seminar in Civil Engineering (3)
Prerequisite: Graduate Standing or consent of instructor.
Presentation of research in special fields of structures, transportation, environmental, urban, geotechnical, water resources, or construction engineering management. May be repeated once for credit. No more than six units of CE 602.
(Lecture-Problems 3 hours) Letter grade only (A-F).

629. Traffic Operations (3)
Prerequisite: CE 429 or 529 all with a grade of "C" or better, or consent of instructor.
Principles of traffic flow. Highway traffic operations. Evaluation of quality of traffic operations including long-range impact on efficient use of the systems and on safety. Identification and evaluation of measures of effectiveness. Travel demand management strategies and intelligent transportation system applications.
(Lecture-Problems 3 hours) Letter grade only (A-F).

630. Mathematical Modeling in Hydraulic Engineering (3)
Prerequisite: CE 437 with a grade of "C" or better or consent of instructor.
Numerical techniques for solving hydraulic problems in water supply, waste water disposal and storm drainage systems. Prediction of important parameters by mathematical modeling on problems encountered in artificial channels, rivers, estuaries and marine environments.
(Lecture-Problems 3 hours) Letter grade only (A-F).

640./740. Mathematical Modeling in Geotechnical Engineering (3)
Prerequisite: Graduate standing or consent of instructor.
Mathematical modeling techniques used in geotechnical engineering. Application of proven computer programs.
M.S. students register in CE 640; Ph.D. students register in CE 740. Ph.D. students will be required to complete a more rigorous computer project.
(Lecture-Problems 3 hours) Letter grade only (A-F).

740. Ph.D. students will be required to complete a more rigorous computer project.
M.S. students register in CE 640; Ph.D. students register in CE 740. Ph.D. students will be required to complete a more rigorous computer project.
(Lecture-Problems 3 hours) Letter grade only (A-F).

Construction Engineering Management Courses (CEM)

LOWER DIVISION

121. Construction Drawing I (2) F
An introduction to conventional and computer aided drafting techniques in the relation of drawings for construction. Interpretation of details in construction drawings/blueprints and reference materials. Laboratory: Drafting plans for a residential building using the techniques introduced in the course.
(Lecture 1 hr, laboratory 3 hrs) Letter grade only (A-F).

125. Fundamentals of Construction (3)
Survey of the professional activities and environments of Construction Education. Overview of residential, commercial, institutional, industrial, and heavy civil construction and associated codes, standards, and ethical boundaries. Areas of focus to include type of foundations, materials, contract documents, working drawings and vocabulary.
(Lecture-Discussion 3 hours) Letter grade only (A-F).

200. Concrete Construction (1)
Prerequisite: CEM 125 with a grade of "C" or better. Corequisite: CEM 200L.
Concrete composition, Concrete mix design technology, physical properties of concrete, use of admixtures, concrete batching, curing, testing. Includes physical testing of designed mixes. Modern concepts as fundamental solution to concrete construction challenges. New developments in concrete chemistry and strength theory.
Letter grade only (A-F). Not open for credit to students with credit in CEM 235. (Lecture-Discussion 1 hour)

200L. Concrete Construction Laboratory (1)
Corequisite: CEM 200.
Laboratory exercises in support of CEM 200. Concrete Construction. Develop concrete mix designs and prepare concrete samples for testing, such as compressive strength, slump and air entrainment, and aggregate testing.
(Laboratory 3 hours) Letter grade only (A-F). Not open for credit to students with credit in CEM 235L.

201. Cost Accounting for Construction Engineering (3)
Theoretical Practical and concepts of cost accounting. Variable and fixed costs, break-even point, interrelationships of cost, volume and profits; job-order accounting, general and flexible budgeting, standard costs; product costing methods; cost allocation; inventory planning; control and valuation; joint product.
(Lecture-Problems 3 hours) Letter grade only (A-F).

202. Probability and Statistics for Construction Engineering Management (3)
Prerequisite: High School Algebra.
Statistics and probability theories, sampling, correlation, regression applied to Construction Engineering Management. Laboratory. (Simulation using statistical packages)
(Lecture 2 hours, Activity 2 hours) Letter grade only (A-F).
204. Applied Mechanics—Statics (3)
Prerequisites: MATH 122 and PHYS 100A all with a grade of "C" or better.
(Lecture 2 hours, Activity 2 hours) Letter grade only (A-F).

205. Computer Systems and Programming (2)
Overview of computer systems. Hardware topics include: Updated coverage of the central processing unit and memory, input/output devices, and storage mechanism. Software topics include: operating systems, and systems analysis. For laboratory exercises oriented object oriented programming is used to solve problems.
(Lecture - Discussion 1 hour and Laboratory 3 hrs). Letter grade only (A-F).

Prerequisites: CEM 121, 125 with a grade of "C" or better.
Corequisites: CEM 200, 200L.
An introductory course in planning, design, and construction of residential and light commercial buildings including materials, equipment, construction/assembly methods, quantity take-off, and building codes/standards. Field trips or visual presentation is required.
(Seminar 2 hours and Activity 2 hours) Letter grade only (A-F).

UPPER DIVISION

304. Applied Mechanics Strength of Materials (2)
Prerequisite: CEM 204 with a grade of "C" or better.
Strength of structural materials and applications in building structures and machines. Mechanical properties of materials, structural behaviors of load resisting components associated with construction processes.
(Lecture-Discussion 1 hr, Activity 2 hrs) Letter grade only (A-F).

310. Communication in Engineering Profession (3)
Prerequisites: ENGL 100, COMM 110 all with a grade of "C" or better and Senior standing.
(Lecture - Discussion 3 hours) Letter grade only (A-F).

315. Construction Safety (2)
Prerequisite: CEM 225 or CE 200 all with a grade of "C" or better.
Terminology, safety functions, accident costs, workman's compensation and liability laws, O.S.H.A., governmental and non-governmental codes, regulations and field safety methods pertinent to the construction industry. Field trips.
Not open for credit to students with credit in CEM 328. (Lecture 1 hour , Activity 2 hours) Letter grade only (A-F).

320. Operations Management in Contemporary Organizations (3)
Prerequisites: MGMT 300, ENGR 310 all with a grade of "C" or better.
Overview of Managerial and organizational theories and practices - introduction to concepts, methods to analyze and improve operations performance in construction and in service organizations. Decision-making and problem-solving processes for organizations, management Effectiveness and efficiency at the organizational, process level, and performer level.
(Lecture-Discussion 3 hours) Letter grade only (A-F).
Construction Engineering Management Courses (CEM)

425. Earthwork and Civil Works Construction Practices (2)
Prerequisite: CEM 324, CE 406 all with a grade of "C" or better.
Fundamentals of earthmoving operations, including volume calculation and mass diagrams, soil protection and dewatering systems, volume change characteristics and fundamentals of moving earth, equipment selection, management and economics.
(Seminar 1 hour and Activity 2 hours) Letter grade only (A-F).

426. Business and Construction Law (3)
Prerequisites: CEM 324; BLAW 220 all with a grade of "C" or better.
Contractors license, mechanics lien, subdivision laws; public works projects, bid and bid requirements. Litigation and legal trends in affirmative action, design professional's liability. Administrative procedures of contractors. Study documentation, claims, waivers, arbitration, bonding, insurance, and indemnification. Discuss ethical practices.
(Lecture-Discussion 3 hrs.) Letter grade only (A-F).

429. Advanced Estimating and Bidding (3)
Prerequisite: CEM 315 with a grade of "C" or better.
Corequisite: CEM 425.
Concept and practices involved in the total estimate bidding process in construction, form initial project selection for submission of final bids. A complete project estimate and bid is prepared by each study.
(Lecture 2 hours, Activity 2 hours) Letter grade only (A-F).

431. Construction Cost Control (3)
Prerequisites: CE 406 and CEM 421 all with a grade of "C" or better.
Establishing and controlling construction projects cost through utilization of procedures, techniques and systems commonly used to control resources allocated and to be expended on construction projects.
(2 hrs lecture, 2 hrs activities) Letter grade only (A-F).

432. Facility Administration (3)
Prerequisite: CEM 421 with a grade of "C" or better.
Management skills for facility management. Emphasis is placed on the management functions of planning, organizing, directing and controlling. Topics include: negotiation; communication; performance measurement; job enrichment; motivation; contracting services and interpersonal relationships.
(Lecture-Discussion 3 hours) Letter grade only (A-F).

433. Facility Finance Management (3)
Corequisite: CEM 432.
Analysis of financial management strategies associated with facility management. Topics include: buy-lease considerations; building efficiency; leasing considerations; cost control and record keeping; facility capitalization; facility budgeting; cost benefit analysis and financial reports.
(Lecture-Discussion 3 hours) Letter grade only (A-F).

434. Facility and Property Management (3)
Prerequisite: CEM 433 with a grade of "C" or better.
Principles of facility and property management. Topics include: property development; cost benefit analysis; site selection; architectural design; layout plans; building engineering; specifications; stacking and blocking plans; aesthetic standards; renovation and contracting standards.
(Lecture-Discussion 3 hours) Letter grade only (A-F).

436. Facility Operations Management (3)
Prerequisite: CEM 432 with a grade of "C" or better.
Analysis of the functions of facility operations management. Topics include: building systems; mechanical systems; energy management; electrical systems; trades operations; grounds maintenance; custodial; furniture and equipment; waste removal contracting services; furniture standards; security systems and planned maintenance.
(Lecture-Discussion 3 hours) Letter grade only (A-F).

438. Structural Design II (2)
Prerequisite: CEM 304 with a grade of "C" or better.
Simplified designs for steel and wood structures in accordance with current building codes. Selection of structural steel and wood systems with structural characteristics of members and connections.
(Lecture 1 hour, Activity 2 hours) Letter grade only (A-F).

443. Principles of Design-Build Project Delivery (3)
Prerequisite: CEM 373 with a grade of "C" or better.
General overview and unique distinguish essential elements of design-build project delivery and how to make the mental-shift needed to transition from traditional Design-Bid-Build to design-build project delivery.
(2 hrs lecture, 2 hrs activities) Letter grade only (A-F).

476. Construction and Maintenance of Infrastructure Facilities (2)
Prerequisites: CEM 425 with a grade of "C" or better.
Comprehensive coverage of the construction principles and technologies embraced by the heavy civil industry. The course presents the construction methods and maintenance practices of heavy civil projects, with emphasis on utility pipes, bridges and roads.
(Lecture 1 hour - Activity 2 hours) Letter grade only (A-F).

485. CEM Senior Seminar (3)
Prerequisites: CEM 429 and 431 all with a grade of "C" or better or consent of instructor.
Advanced work of a technical nature within the construction industry. All students will be required to participate into the Bid Competitions.
(Lecture 2 hours, Activity 2 hours). Letter grade only (A-F).

486. Infrastructure Management (2)
Prerequisites: CEM 476 and CE 406 all with a grade of "C" or better.
Integrated approach to infrastructure management theories and practices including: tools, models and applied systems. The course presents the principles required to manage, preserve and improve the performance of infrastructure systems, with emphasis on utility pipes, bridges and roads.
(1 hr lecture, 2 hrs activities) Letter grade only (A-F).

490. Construction Project Management (3)
Prerequisites: CEM 426, 429 and 431 all with a grade of "C" or better.
Capstone course where integrated project management principles are applied to a case study of actual construction project. Topics include plans and specifications, site logistics, estimating, planning, scheduling, cost control, and contract administration. Additionally, relationships with owners, designers and other officials are analyzed.
(2 hrs lecture, 2 hrs activities) Letter grade only (A-F).