CHEMISTRY AND BIOCHEMISTRY
College of Natural Sciences and Mathematics

Department Chair: Krzysztof Slowinski
Department Office: Hall of Science (HSCI) 370
Telephone/FAX: (562) 985-4941/(562) 985-8557
Website: http://chemistry.csulb.edu

Faculty
Roger A. Acey, Dennis M. Anjo (Emeritus), Stuart R. Berryhill,
Christopher R. Brazier, Xianhui Bu, Paul T. Buonora, Jeffrey A.
Cohler (Emeritus), Shahab Derakhshan, Lijuan Li, Marco A.
Lopez, Eric Marinez, Douglas D. McAbee, Margaret L. Merryfield,
Stephen P. Mezyk, Kensaku Nakayama, Vasanthi Narayanaswami,
Patrick Pierce, Michael Schramm, Gary Shankweiler, Young Shon,
Katarzyna Slowinska, Krzysztof Slowinski, Eric Sorin, Paul M. M.
Weers

Administrative Support Coordinator: Irma Sanchez

Advisors:
Undergraduate: Roger A. Acey
Credentialed: James Kiel, Tim Williamson
Graduate: Biochemistry: Douglas D. McAbee, Chemistry: Lijuan Li

Graduate Studies Committee:
Lijuan Li, Douglas D. McAbee, Kensaku Nakayama, Krzysztof
Slowinski, Eric Sorin

Honors in the Major: Roger A. Acey
Students desiring information should contact the department office
for referral to one of the faculty advisors.

Career Possibilities
Patent Agent • Chemist • Assayer • Water Purification
Chemist • Chemical Lab Technician • Biochemist • Quality
Control Coordinator • Pharmaceutical or Technical Sales
Representative • Public Health Educator • Industrial
Hygienist • Health Administrator • Teacher • Food /
Drug Inspector • Materials Scientist • Medical Librarian •
Environmental Scientist • Criminologist • Pharmacologist
• Dentist • Physician • Geochemist • Chemical
Oceanographer (Some of these, and other careers, require
additional education or experience. For more information,
see www.careers.csulb.edu.)

Introduction
The Department of Chemistry and Biochemistry offers
three bachelor’s degrees, the B.S. in Chemistry, the
B.S. in Biochemistry, and the B.A. in Chemistry, and two
master’s degrees, the M.S. in Chemistry and the M.S.
in Biochemistry. These programs combined serve over
500 majors. In addition, the Department offers a Minor in
Chemistry.

Degree Programs
The programs in chemistry and biochemistry at the
bachelor’s degree level are planned to develop background
in a specific science, to serve as preparation for graduate
work in chemistry or biochemistry, and to provide a
foundation for those students seeking careers in the
chemical sciences, teaching, law, medicine, dentistry,
pharmacy and other health-related professions, and in
industrial and governmental scientific occupations. The B.S.
degree in Chemistry is certified by the American Chemical
Society (American Chemical Society, Committee on
Professional Training, 1155 Sixteenth St., NW, Washington,
DC 20036, phone: 202-872-4589).

Transfer Students: A student who transfers to the
University must take at least 16 units of upper division
chemistry courses here. To receive credit towards the major
for courses taken elsewhere in place of CHEM 320A,B
and/or 371A,B and/or 377A,B, consent of the Department
Chair is required. Satisfactory performance on appropriate
proficiency examinations may also be required.

The Department of Chemistry and Biochemistry offers
graduation study leading to research-based master of science
degrees in chemistry and biochemistry.

Applicants for the master of science degree programs
should apply online both to the university and to the
departments. Links to the online application forms can be
found on the department’s web site (http://chemistry.csulb.
edu – click on “Graduate Programs”).

A limited number of teaching associate and graduate
and research assistantships are available. Usually, these involve
half-time work in the instructional program at the freshman
and sophomore level or work in the laboratory. An applicant
may apply for a teaching associate or graduate assistant
position in the course of completing the online departmental
application.

Academic Advising and Facilitated Enrollment
into Classes
All entering students who declare a major in a degree
program offered by this department need to contact the
College of Natural Sciences and Mathematics’ Academic
Advising Center (HSCI 164) and participate in the College’s
Science Safari to Success (for first time freshmen) or
EONS (Enrollment and Orientation in the Natural Sciences
and Mathematics for transfer students) Program. These
programs are held in July for those starting in the Fall
Semester and in January for those starting in the Spring
Semester. Department advisors will be available to provide
an overview of the students’ chosen baccalaureate degree
program, to assist with academic advisement, to provide
information on the many career opportunities available, and
to aid students in enrolling in classes. Contact the Jensen
Student Access to Sciences and Mathematics Center (HSCI
164) or department office for additional information.

Concurrent and/or Summer Enrollment in Another
College
Students who wish to take course work in a community
or other college to meet curricular requirements while
enrolled as undergraduates in the College of Natural
Sciences and Mathematics must petition the appropriate
department for approval prior to enrolling in specific
courses. This policy applies to concurrent enrollment
or summer enrollment. University policy must also be
complied with; see “Concurrent Enrollment” and “Transfer
of Undergraduate Credit” in this catalog. Courses not
receiving prior approval will not be accepted for credit by the
Department.
Undergraduate Programs

Bachelor of Science in Chemistry (124 units)

Degree Progress
Chemistry and Biochemistry majors must complete the following requirements within the specified time of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. Students who have not met the requirements by the required semester must either declare another major or meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete. Students required to enroll in pre-baccalaureate math may receive one additional semester to meet the requirements.

Freshmen: A grade "C" or better must be achieved in both MATH 122 and CHEM 111A within one calendar year. A grade "C" or better must be achieved in CHEM 111B and either CHEM 320A or CHEM 251 with two calendar years.

Transfer Students: A grade "C" or better must be achieved in MATH 123 and CHEM 111B within one calendar year. A grade of "C" or better must be achieved in both CHEM 320A and CHEM 251 within two calendar years.

In addition, all Chemistry and Biochemistry majors must maintain major and upper-division major GPAs of 2.0 or higher. A student whose GPA in the major or upper division GPA in the major falls below 2.0 will be advised that they are at risk of being dismissed from the major and granted one semester to raise their major GPA(s) to 2.0. Students who do not successfully raise their major GPA(s) must meet with an advisor to declare another major or submit an appeal to the Department or Chemistry and Biochemistry explaining why they need one additional semester. Students whose major GPAs remain below 2.0 after this additional semester must declare a new major.

Students Desiring Entrance into a Health Professions Program
Students desiring entrance into one of the various health-related professional schools should consult with the Health Professions Advising Office in the College of Natural Sciences and Mathematics, Jensen Student Access to Sciences and Mathematics Center (HSCI-164) for more information. Most of the these schools do not require students to major in any particular discipline and many favor applicants who have earned a baccalaureate; rather, they want students who have done well in their major and who also took the prerequisite courses required by that particular school.

Requirements
Lower Division:
Either take all of the following:

- BIOL 211 Introduction to Evolution and Diversity (4)
 Prerequisite/Corequisite: CHEM 111A with a grade of "C" or better.
- BIOL 212 Intro to Cell and Molecular Biology (4)
 Prerequisites: Completion of BIOL 211 and CHEM 111A with grades of "C" or better.

NOTE: BIOL 111, 111L, 212, 212L are required if courses were taken prior to catalog year 2010-11.

Or one of the following:
- BIOL 200 General Biology (4)
 Prerequisite: GE Foundation requirements.
- BIOL 205 Human Biology (4)
 Prerequisites: GE Foundation requirements.
- BIOL 207 Human Physiology (4)
 Prerequisites: GE Foundation requirements.

Take all of the following courses:
- CHEM 111A General Chemistry (5)
 Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).
- CHEM 111B General Chemistry (5)
 Prerequisite: CHEM 111A with a grade of "C" or better.
- CHEM 251 Quantitative Analysis (4)
 Prerequisite: CHEM 111B with a grade of "C" or better. It is strongly recommended that CHEM 251 be taken within one calendar year of CHEM 111B.
- MATH 122 Calculus I (4)
 Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
- MATH 123 Calculus II (4)
 Prerequisite: A grade of "C" or better in MATH 122.
- MATH 224 Calculus III (4)
 Prerequisite: A grade of "C" or better in MATH 123 or 222.
- PHYS 151 Mechanics and Heat (4)
 Prerequisite/Corequisite: MATH 122.
- PHYS 152 Electricity and Magnetism (4)
 Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.
- PHYS 254 Applied Modern Physics (3)
 Prerequisite: PHYS 152 or EE 210; Prerequisite/Corequisite: MATH 224.
- PHYS 255 Laboratory on Modern Physics (1)
 Prerequisite/Corequisite: PHYS 254.

Upper Division:
Take all of the following courses:
- CHEM 320A Organic Chemistry (3)
 Prerequisite: CHEM 111B with a grade of "C" or better. CHEM 251 is recommended.
- CHEM 320B Organic Chemistry (5)
 Prerequisite: CHEM 320A with a grade of "C" or better.
- CHEM 331 Inorganic Chemistry (3)
 Prerequisites: CHEM 111B, 251 both with a grade of "C" or better.
- CHEM 332 Inorganic Chemistry Lab (2)
 Prerequisite: CHEM 331 (may be taken concurrently).
- CHEM 361 Chemical Communications (3)
 Prerequisites: GE Foundation requirement, concurrent or previous enrollment in CHEM 320A.
- CHEM 371A Physical Chemistry (3)
 Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), MATH 224 (may be taken concurrently).
- CHEM 371B Physical Chemistry (3)
 Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), and MATH 224 (may be taken concurrently).
- CHEM 373, Physical Chemistry Laboratory (3)
 Prerequisites: CHEM 251, CHEM 371A or CHEM 377A or 377B, all with a grade of "C" or better. Corequisite: CHEM 371B.
- CHEM 420 Advanced Organic Chemistry Lab (3)
 Prerequisites: CHEM 251, 320B, and either CHEM 361 or 466.
CHEM 431 Advanced Inorganic Chemistry (3)
Prerequisites: CHEM 331, 371B, both with a grade of "C" or better.

CHEM 441A Biological Chemistry (3)
Prerequisite: Either CHEM 320B or both CHEM 322B and 323B with a grade of "C" or better; a biology or microbiology course is recommended.

CHEM 451 Instrumental Methods of Analysis (4)
Prerequisite(s): PHYS 152, CHEM 251; 361; 371B or 377B; all with a grade of "C" or better.

Take an additional 3 units of upper division chemistry electives including at least one unit of CHEM 496. CHEM 330, 425, 430, or 475 may be used as chemistry electives.

Students are also advised to take one or more additional courses in mathematics, such as MATH 247, 364A, 370A, 380.

Bachelor of Arts in Chemistry (120 units)

Degree Progress

Chemistry and Biochemistry majors must complete the following requirements within the specified time of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. Students who have not met the requirements by the required semester must either declare another major or meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete.

Students required to enroll in pre-baccalaureate math may receive one additional semester to meet the requirements.

Freshmen: A grade "C" or better must be achieved in both MATH 122 and CHEM 111A within one calendar year. A grade "C" or better must be achieved in CHEM 111B and either CHEM 320A or CHEM 251 with two calendar years.

Transfer Students: A grade "C" or better must be achieved in MATH 123 and CHEM 111B within one calendar year. A grade of "C" or better must be achieved in both CHEM 320A and CHEM 251 within two calendar years.

In addition, all Chemistry and Biochemistry majors must maintain major and upper-division major GPAs of 2.0 or higher. A student whose GPA in the major or upper division GPA in the major falls below 2.0 will be advised that they are at risk of being dismissed from the major and granted one semester to raise their major GPA(s) to 2.0. Students who do not successfully raise their major GPA(s) must meet with an advisor to declare another major or submit an appeal to the Department or Chemistry and Biochemistry explaining why they need one additional semester. Students whose major GPAs remain below 2.0 after this additional semester must declare a new major.

Requirements

Lower Division:

Take all of the following courses:

CHEM 111A General Chemistry (5)
Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).

CHEM 111B General Chemistry (5)
Prerequisite: CHEM 111A with a grade of "C" or better.

CHEM 251 Quantitative Analysis (4)
Prerequisite: CHEM 111B with a grade of "C" or better. It is strongly recommended that CHEM 251 be taken within one calendar year of CHEM 111B.

MATH 122 Calculus I (4)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.

MATH 123 Calculus II (4)
Prerequisite: A grade of "C" or better in MATH 122.

PHYS 151 Mechanics and Heat (4)
Prerequisite/Corequisite: MATH 122.

PHYS 152 Electricity and Magnetism (4)
Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.

Upper Division:

Take all of the following courses:

CHEM 320A Organic Chemistry (3)
Prerequisite: CHEM 111B with a grade of "C" or better. CHEM 251 is recommended.

CHEM 320B Organic Chemistry (5)
Prerequisite: CHEM 320A with a grade of "C" or better.

CHEM 331 Inorganic Chemistry (3)
Prerequisites: CHEM 111B, 251 both with a grade of "C" or better.

CHEM 361 Chemical Communications (3)
Prerequisites: GE Foundation requirement, concurrent or previous enrollment in CHEM 320A.

CHEM 420 Advanced Organic Chemistry Lab (3)
Prerequisites: CHEM 320A, 320B, and either CHEM 361 or 466.

CHEM 451 Instrumental Methods of Analysis (4)
Prerequisite(s): PHYS 152, CHEM 251; 361; 371B or 377B; all with a grade of "C" or better.

Select one pair from the following:

CHEM 371A Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), MATH 224 (may be taken concurrently).

CHEM 371B Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), and MATH 224 (may be taken concurrently).

or

CHEM 377A Fundamentals of Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, and PHYS 100B or 152 (all with a grade of "C" or better).

CHEM 377B Fundamentals of Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 122, PHYS 100B or 152 (all with a grade of "C" or better, MATH 123 (may be taken concurrently).

Take a minimum of 3 additional units chosen with advisor consultation from the following:

CHEM 332, 373, 421, 431, 441A,B, 480, 496

Students must consult an advisor to select additional courses to meet the student's individual goals and interests.

Bachelor of Science in Biochemistry (123 units)

Degree Progress

Chemistry and Biochemistry majors must complete the following requirements within the specified time of declaring the major. Some students may need to take courses during Summer Session to meet these requirements. Students who have not met the requirements by the required semester must either declare another major or meet with an Academic Advisor to determine if the student's performance in the courses merits an additional semester to complete. Students
required to enroll in pre-baccalaureate math may receive one additional semester to meet the requirements.

Freshmen: A grade "C" or better must be achieved in both MATH 122 and CHEM 111A within one calendar year. A grade "C" or better must be achieved in CHEM 111B and either CHEM 320A or CHEM 251 within two calendar years.

Transfer Students: A grade "C" or better must be achieved in MATH 123 and CHEM 111B within one calendar year. A grade of "C" or better must be achieved in both CHEM 320A and CHEM 251 within two calendar years.

In addition, all Chemistry and Biochemistry majors must maintain major and upper-division major GPAs of 2.0 or higher. A student whose GPA in the major or upper division GPA in the major falls below 2.0 will be advised that they are at risk of being dismissed from the major and granted one semester to raise their major GPA(s) to 2.0. Students who do not successfully raise their major GPA(s) must meet with an advisor to declare another major or submit an appeal to the Department or Chemistry and Biochemistry explaining why they need one additional semester. Students whose major GPAs remain below 2.0 after this additional semester must declare a new major.

Requirements
Lower Division:
Take all of the following courses:

CHEM 111A General Chemistry (5)
Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended.
(Recommended for students who intend to pursue careers in science or engineering).
CHEM 111B General Chemistry (5)
Prerequisite: CHEM 111A with a grade of "C" or better.
CHEM 251 Quantitative Analysis (4)
Prerequisite: CHEM 111B with a grade of "C" or better. It is strongly recommended that CHEM 251 be taken within one calendar year of CHEM 111B.
BIOL 211 Introduction to Evolution and Diversity (4)
Prerequisite/Corequisite: CHEM 111A with a grade of "C" or better.
BIOL 212 Intro to Cell and Molecular Biology (4)
Prerequisite: Completion of BIOL 211 and CHEM 111A with grades of "C" or better.
MATH 122 Calculus I (4)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.
MATH 123 Calculus II (4)
Prerequisite: A grade of "C" or better in MATH 122.
PHYS 151 Mechanics and Heat (4)
Prerequisite/Corequisite: MATH 122.
PHYS 152 Electricity and Magnetism (4)
Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.

NOTE: BIOL 111, 111L, 212, 212L are required if courses were taken prior to catalog year 2010-11.

Upper Division:
Take all of the following courses:

BIOL 340 Advanced Cell Biology (3)
Prerequisites: BIOL 211, 212; CHEM 320A or 322A or 327 all with a grade of "C" or better.
CHEM 320A Organic Chemistry (3)
Prerequisite: CHEM 111B with a grade of "C" or better. CHEM 251 is recommended.

CHEM 320B Organic Chemistry (5)
Prerequisite: CHEM 320A with a grade of "C" or better.
CHEM 361 Chemical Communications (3)
Prerequisites: GE Foundation requirement, concurrent or previous enrollment in CHEM 320A.
CHEM 441A Biological Chemistry (3)
Prerequisite: Either CHEM 320B or both CHEM 322B and 323B with a grade of "C" or better; a biology or microbiology course is recommended.
CHEM 441B Biological Chemistry (3)
Prerequisite: CHEM 441A with a grade of "C" or better.
CHEM 443 Biological Chemistry Laboratory (3)
Prerequisites: CHEM 251, 441B; and either CHEM 361 or 466; all with a grade of "C" or better.

Select one of the following:
CHEM 371A Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), MATH 224 (may be taken concurrently).
CHEM 377A Fundamentals of Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, and PHYS 100B or 152 (all with a grade of "C" or better).

(371A,B is recommended as preparation for graduate studies in biochemistry)

Select one of the following:
CHEM 371B Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), and MATH 224 (may be taken concurrently).
CHEM 377B Fundamentals of Physical Chemistry (3)
Prerequisites: CHEM 251, MATH 123, PHYS 100B or 152 (all with a grade of "C" or better, MATH 123 (may be taken concurrently).

Select one course from the following:
CHEM 420 Advanced Organic Chemistry Lab (3)
Prerequisites: CHEM 251, 320B, and either CHEM 361 or 466.
CHEM 451 Instrumental Methods of Analysis (4)
Prerequisites: PHYS 152, CHEM 251; 361; 371B or 377B; all with a grade of "C" or better.

Select one of the following options:
MICR 371 Microbial Genetics (3)
Prerequisite: MICR 211 with a grade of "C" or better.
MICR 372 Microbial Genetics Laboratory (2)
Prerequisite: MICR 211 with a grade of "C" or better. Recommended: MICR 371.

OR

MICR 370 General Genetics (4)
Prerequisites: BIOL 211, 212 and either BIOL 260 or CHEM 251 all with a grade of "C" or better.

Take three additional units of elective chosen from:
BIOL 445, 448, 473 and BIOL 342 plus 342L; CHEM 331, 373, 420, 421, 431, 451, 480; MICR 452, 473

Chemistry Concentration
The Chemistry Concentration meets the subject matter competence requirement for the Single Subject Teaching Credential in Chemistry. Consult with an adviser in the Department of Science Education early to plan a program.

Requirements
Lower Division:
Take all of the following courses:

ASTR 100 Astronomy (3)
Corequisites: One course from General Education Category B.2 and ASTR 100L.
BIOL 211 Introduction to Evolution and Diversity (4)
Prerequisite/Corequisite: CHEM 111A with a grade of "C" or better.

BIOL 212 Intro to Cell and Molecular Biology (4)
Prerequisites: Completion of BIOL 211 and CHEM 111A with grades of "C" or better.

BIOL 213 Introduction to Ecology and Physiology (4)
Prerequisites: BIOL 211, 212, CHEM 111B all with a grade of "C" or better.

CHEM 111A General Chemistry (5)
Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).

CHEM 111B General Chemistry (5)
Prerequisite: CHEM 111A with a grade of "C" or better.

CHEM 251 Quantitative Analysis (4)
Prerequisite: CHEM 111B with a grade of "C" or better. It is strongly recommended that CHEM 251 be taken within one calendar year of CHEM 111B.

GEOL 102 General Geology (3)
Prerequisites/Corequisites: A course that fulfills the A.1 GE requirement and three years of high school mathematics including algebra, geometry, and intermediate algebra or the equivalent.

GEOL 104 Geology Laboratory (1)
Prerequisites/Corequisites: A course that fulfills the A.1 GE requirement and three years of high school mathematics including algebra, geometry, and intermediate algebra or the equivalent, and concurrent or prior enrollment in GEOL 102.

GEOL 160 Introduction to Oceanography (3)
Prerequisites/Corequisites: A course that fulfills the A.1 GE requirement and three years of high school mathematics including algebra, geometry, and intermediate algebra or the equivalent.

NOTE: BIOL 111, 111L, 212, 212L, 213, 213L are required if courses were taken prior to catalog year 2010-11.

Select one pair from the following:

PHYS 100A General Physics (4)
Prerequisite: MATH 109 or 113 or 117 or 119A or 120 or 122.

PHYS 100B General Physics (4)
Prerequisite: PHYS 100A.

or

PHYS 151 Mechanics and Heat (4)
Prerequisite/Corequisite: MATH 122.

PHYS 152 Electricity and Magnetism (4)
Prerequisite: PHYS 151; Prerequisite/Corequisite: MATH 123.

Select one pair from the following:

MATH 119A Survey of Calculus I (3)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 113.

MATH 119B Survey of Calculus II (3)
Prerequisite: MATH 119A or 122.

or

MATH 122 Calculus I (4)
Prerequisite: Appropriate MDPT placement or a grade of "C" or better in MATH 111 and 113, or a grade of "C" or better in MATH 117.

MATH 123 Calculus II (4)
Prerequisite: A grade of "C" or better in MATH 122.

Upper Division:

Take all of the following:

CHEM 320A Organic Chemistry (3)
Prerequisite: CHEM 111B with a grade of "C" or better. CHEM 251 is recommended.

CHEM 320B Organic Chemistry (5)
Prerequisite: CHEM 320A with a grade of "C" or better.

CHEM 441A Biological Chemistry (3)
Prerequisite: Either CHEM 320B or both CHEM 322B and 323B with a grade of "C" or better; a biology or microbiology course is recommended.

CHEM 451 Instrumental Methods of Analysis (4)
Prerequisite(s): PHYS 152, CHEM 251; 361; 371B or 377B; all with a grade of "C" or better.

CHEM 496 Special Problems in Chemistry (1-3)
Prerequisite: Consent of instructor.

SCED 403 Integrated Science (3)
Prerequisites: Completion of all credential breadth requirements for the Single Subject Teaching Credential Program in Science, three-fourths of the credential specializations courses, and consent of instructor.

Take one of the following:

CHEM 431 Advanced Inorganic Chemistry (3)
Prerequisites: CHEM 331, 371B, both with a grade of "C" or better.

CHEM 441B Biological Chemistry (3)
Prerequisite: CHEM 441A with a grade of "C" or better.

Single Subject Teaching Credential in Chemistry

In addition, prospective Chemistry teachers are required to complete 45 units of professional preparation in the Single Subject Credential Program, including student teaching. Professional preparation courses may be taken as early as the junior year. With careful planning, it is possible to complete many of the credential program courses, except for student teaching, as an undergraduate. Courses may also be started as a post-baccalaureate student. Refer to the Single Subject Teacher Education section of this catalog or the Single Subject Credential Program website (www.ced.csulb.edu/single-subject) for a description of the professional preparation requirements, courses, and application procedures.

The Chemistry Subject Matter Program is being revised to meet new state standards. When the revised program has been approved by the Commission on Teacher Credentialing, the new course requirements will be in effect and supersede current requirements.

Honors in Biochemistry or Chemistry

Students majoring in the B.S. in Biochemistry, B.S. in Chemistry, or B.A. in Chemistry who would like an enriched academic program including an intensive research experience may be eligible to graduate with Honors in the Major through the University Honors Program. Students may complete General Honors through the University Honors Program as well; in such cases the General Honors thesis requirement is met through Honors in the Major (see University Honors in this catalog).

Chemistry majors must take additional coursework in biology beyond the minimum required for a chemistry degree.

The requirements for Honors in the Major also satisfies the requirements of a college-wide program, Honors in Biological Sciences, created with the support of a grant from the Howard Hughes Medical Institute. While Honors in the Major requires junior or senior standing, the college-wide program offers an enriched curriculum. Interested students should contact the Honors in the major director or the Jensen Student Access to Sciences and Mathematics Center.
Requirements for Admission to Honors in the Major
1. Junior or senior standing with at least one year remaining before graduation.
2. Declared major of B.S. in Biochemistry, B.S. in Chemistry, or B.A. in Chemistry.
3. Submission of an application detailing interest in the program and willingness to commit to a year-long research experience.
4. Letter of recommendation from a CSULB faculty member familiar with the student's work.
5. Completion of BIOL 211, 212, 213 (BIOL 111, 111L, 212, 212L, 213, 213L are required if courses were taken prior to catalog year 2010-11) (or BIOL 211A,B); CHEM 251, 320A,B at time of entry with grades of at least "C" in each course. Students may apply during the semester in which they expect to complete these courses.
6. GPA of at least 3.00 in all courses in the major and in all upper division courses in the major.

Requirements for Graduation with Honors in the Major
1. GPA of at least 3.30 in all upper division courses in the major and in Honors courses.
2. Completion of all requirements for the B.S. in Biochemistry, B.S. in Chemistry, or B.A. in Chemistry.
3. Completion of BIOL/CHEM 466, Research Design and Methods - Honors (3 units).
4. Completion of 3 units CHEM 496, Undergraduate Directed Research.
6. Presentation of research results in a public forum. This requirement may be met by presentation at a scientific conference or at a local venue; consult the Honors in the Major advisor for additional information.

Substitutions to this program must be approved by the Honors in the Major Advisor.

Minor in Chemistry
Requirements
The Minor in Chemistry is available to any non-Chemistry or non-Biochemistry major.
A minimum of 20 units of chemistry which must include: CHEM 111A General Chemistry (5)
- Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in Chem 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).
CHEM 111B General Chemistry (5)
- Prerequisite: CHEM 111A with a grade of "C" or better.
A minimum of nine units must be taken from upper division chemistry courses.
There are three Organic Chemistry paths. Students may use courses from only one of the paths to meet the requirements of the minor.
CHEM 327 Fundamentals of Organic Chemistry (3)
- Prerequisite: CHEM 111A with a grade of "C" or better; CHEM 111B is recommended.

Graduate Programs

Master of Science in Chemistry
Prerequisites
1. Acceptance as a graduate student by the Department of Chemistry and Biochemistry;
2. A bachelor's degree with a major in chemistry; or a bachelor's degree with undergraduate preparation in chemistry, physics and mathematics equivalent to that required for the bachelor's degree with a major in chemistry at this University. A student deficient in any of these courses
must complete the course(s) as a graduate student. The courses that must be taken to make up those deficiencies will be determined by the Graduate Adviser in consultation with the Graduate Studies Committee. Students with majors in other areas may be considered for admission at the discretion of the Graduate Adviser.

3. Entering graduate students are required to take a minimum of two placement examinations (more exams may be required by Graduate Committee) as follows:

- at the beginning of the first semester of the M.S. program: student chooses to take one placement examination in analytical, inorganic, organic, physical or biochemistry.
- at the beginning of the second semester of the M.S. program, student takes any additional placement examination(s) required by the Thesis Committee to a minimum of two.

Under some circumstances with the approval of the Graduate Adviser, students may take 2 or more placement examinations at the beginning of the first semester.

Any student failing to pass a placement examination is required to complete with a minimum grade of "B" or better an appropriate course recommended by the Graduate Studies Committee. Usually the recommended courses are:

- CHEM 251 and/or 451
- CHEM 331 and/or 431
- CHEM 320A and/or CHEM 320B
- CHEM 371A and/or 371B
- CHEM 441A and/or 441B
- if the subject is biochemistry.

4. The placement examinations are usually given on the Monday of the week preceding the first day of instruction. The Graduate Studies Committee evaluates the examination results and recommends appropriate courses to correct any deficiencies in chemistry.

5. Entering students must select a research advisor by the ninth week of the first semester. The thesis advisor will select two additional faculty members to serve on the Thesis Committee by the 13th week of the first semester. The Thesis Committee will prepare a degree program including the following: (1) additional placement examination(s) the student will take at the beginning of the second semester; (2) a list of graduate courses to be completed in the course of the program. The degree program must be finalized and forwarded to Graduate Advisor by the end of the second semester. Any change in the approved degree program must be preauthorized by Graduate Advisor.

6. Each student shall prepare a thesis proposal in collaboration with the research advisor, stating the specific topic of the research and its significance, the specific objectives of the research, and the methods to be used. The thesis proposal must be approved by the Thesis Committee. The student must make a public presentation of the proposal by the end of the second semester in the MS program. Any major change in direction during the course of the research shall be subject to the approval of the Thesis Committee.

Advancement to Candidacy

The regulations governing each student's master's degree are those in effect at the time of the student's advancement to candidacy. The Department Graduate Studies Committee recommends advancement to candidacy after the graduate student has:

1. Either passed all the required placement examinations including those recommended by the Thesis Committee or achieved a grade of "B" or better in each course recommended by the Graduate Studies Committee for correcting the deficiencies;
2. Completed at least 6 units of courses on the proposed Graduate Program;
3. While in residence as a graduate student at this University, earned at least a 3.0 ("B") average in all upper division and graduate work, a 3.0 GPA in all CHEM courses, and a 3.0 GPA in all courses on the graduate program.
4. Fulfilled the Graduation Writing Assessment Requirement (GWAR);
5. Obtained approval of a graduate degree program by the Thesis Committee, the Graduate Adviser, the Department Chair (in consultation with the Graduate Studies Committee), and the Associate Dean responsible for graduate studies in the College of Natural Sciences and Mathematics.
6. Make a public presentation of their thesis proposal and made appropriate progress in their proposed research as determined by the Thesis committee.

The criteria above should be met by the beginning of the third semester of graduate study. Deficient students may continue at the discretion of the Department Graduate Studies Committee. Students should be advanced to candidacy as soon as they are eligible.

Requirements

1. Advancement to candidacy;
2. Complete a minimum of 30 units including:
 A. Take a minimum of 12 units in chemistry lecture courses in the 500 series (excluding CHEM 595);
 B. Take CHEM 595 Colloquium for a total of 2 or 3 units
 Prerequisite: Graduate standing or consent of instructor.
 C. Take CHEM 660 Seminar in Chemistry (1-3)
 Prerequisite: None
 D. Take CHEM 697 Directed Research (4-6)
 Prerequisite: Arrangement with instructor.
 E. Take CHEM 698 Thesis (4-6)
 Prerequisites: Advancement to candidacy for M.S. in Chemistry or M.S. in Biochemistry and arrangement with instructor.
 F. Additional courses (excluding CHEM 595 and required courses in the BS Chemistry degree program) as approved by Thesis Committee with concurrence of Graduate Advisor.

Changes in the above pattern of course requirements may be made only by the Graduate Studies Committee and the Graduate Advisor subject to approval by the College's Associate Dean.
3. Completion of a written thesis, of publication quality, acceptable to the members of the thesis committee and a public presentation of the thesis research. The public presentation must be completed before the thesis is signed by the committee members.

5. While not a requirement for the degree, students in the MS program normally gain experience teaching laboratory sections of Chemistry courses, as preparation for professionally related teaching activities in their future careers.

Master of Science in Biochemistry

Prerequisites

1. Acceptance as a graduate student by the Department of Chemistry and Biochemistry;

2. A bachelor's degree with a major in chemistry or biochemistry or one of the biological sciences. Students with majors in other areas may be considered for admission at the discretion of the Graduate Advisor. Prerequisite courses include CHEM 251, 320A,B or 322A,B, 377A,B, 441A,B, 443; MATH 122, 123; PHYS 100A,B or their equivalents and courses in general biology and cell/molecular biology. A student deficient in any of these courses must complete the course(s) as a graduate student.

3. Entering graduate students are required to take a placement examination in biochemistry at the beginning of the first semester of the MS program. A second placement examination in either organic chemistry or physical chemistry must be taken by the beginning of the second semester. Any student failing to pass a placement examination, is required to complete an appropriate course recommended by the Graduate Studies Committee with a minimum grade of "B" or better. Usually the recommended courses are:

 - CHEM 320A and/or CHEM 320B
 - if the subject is organic chemistry.
 - CHEM (371A or 377A) and/or (371B or 377B)
 - if the subject is physical chemistry.
 - CHEM 441A and/or 441B
 - if the subject is biochemistry.

 Under some circumstances, with the approval of the Graduate Advisor, students may take both placement examinations at the beginning of the first semester.

4. The placement examinations are usually given on the Monday of the week preceding the first day of instruction. The Graduate Studies Committee evaluates the examination results and recommends appropriate courses to correct any deficiencies in chemistry.

5. Entering students must select a research advisor by the ninth week of the first semester. The advisor will select two additional faculty members to serve on the Thesis Committee by the end of the 13th week of the first semester. The Thesis Committee will prepare a degree program including the following:

 1. Either passed all the required placement examinations including those recommended by the Thesis Committee or achieved a grade of B or better in courses recommended by the Graduate Studies Committee for correcting the deficiencies;
 2. Completed at least 6 units of courses on the proposed Graduate Program;
 3. While in residence as a graduate student at this University, earned at least a 3.0 ("B") average in all upper division and graduate work, a 3.0 gpa in all CHEM courses, and a 3.0 gpa in all courses on the graduate program.
 4. Fulfilled the Graduation Writing Assessment Requirement (GWAR);
 5. Obtained approval of a graduate degree program by the Thesis Committee, the Graduate Adviser, the Department Chair (in consultation with the Graduate Studies Committee), and the Associate Dean responsible for graduate studies in the College of Natural Sciences and Mathematics.
 6. Made a public presentation of their thesis proposal and made appropriate progress in their proposed research as determined by the Thesis committee.

The criteria above should be met by the beginning of the third semester of graduate study. Deficient students may continue at the discretion of the Department Graduate Studies Committee. Students should be advanced to candidacy as soon as they are eligible.

Requirements

1. Advancement to candidacy;

2. Complete a minimum of 30 units including:

 A. Take a minimum of 12 units in chemistry lecture courses in the 500 series that must include CHEM 541 (excluding CHEM 595);
 B. Take BIOL 540. In some circumstances, 3 units of another 500-level biology lecture course may be substituted with the approval of the Graduate Advisor.
100. Chemistry and Today's World (4)
Prerequisite: One GE Foundation course (GE categories A1, A2, A3, or A2).
Introduction to basic principles of chemistry and a consideration of the benefits and problems arising from applications of chemistry.
Discussions of foods and food additives, drugs, plastics, and other materials of everyday life, fuel sources, the atmosphere, and fresh water. Suitable for general education credit.
Not open for credit to chemistry or biochemistry majors or students with credit in CHEM 111A or CHEM 140. (Lecture 3 hrs., laboratory 3 hrs.) Course fee may be required.

101. Introduction to General Chemistry (4) F,S
Prerequisite/Corequisites: MATH 113 or 117 or 119A or 122.
Preparatory course for CHEM 111A. Recommended for students who have not achieved a satisfactory score on the Chemistry Placement Examination. Credit in CHEM 101 does not substitute for a passing score on the Chemistry Placement Examination. Basic principles and concepts including atomic structure, nomenclature, and chemical calculations with emphasis on problem solving. Does not count for General Education credit. Letter grade only (A-F). Course fee may be required. (Lecture 3 hrs., activity 2 hrs.)

105. Chemistry Explorations (1)
Prerequisite: A general education math class, which may be taken concurrently.
Central concepts of chemistry, including states of matter, atomic structure, periodic properties, chemical compounds and reaction energy, and equilibrium, illustrated with a series of experiments. Intended for students in the Integrated Teacher Education Program (ITEP).
Letter grade only (A-F). (Laboratory 3 hours). Course fee may be required.

111A. General Chemistry (5)
Prerequisites: A passing score on the Chemistry Placement Examination. (Credit in CHEM 101 does not substitute for a passing score on the Chemistry Placement Examination) and a "C" or better in MATH 113 or 117 or 119A or 122. One year of high school chemistry is strongly recommended. (Recommended for students who intend to pursue careers in science or engineering).
First semester of a two-semester sequence (CHEM 111A and 111B). Introduction to principles of chemistry including chemical reactions, stoichiometry, thermochernistry, electronic structure, bonding, and properties of solids, liquids, gases, and solutions.
Letter grade only (A-F). (Lecture 3 hrs., laboratory and problem session 6 hrs.) Course fee may be required.

111B. General Chemistry (5)
Prerequisite: CHEM 111A with a grade of "C" or better.
Second semester of a two-semester sequence (CHEM 111A and 111B). Continuation of chemical principles, applications of bonding theories of inorganic molecules, trends and reactivities of elements and their compounds, chemical equilibrium, kinetics and qualitative inorganic analysis. Solving aequous equilibrium problems are emphasized.
Letter grade only (A-F). (Lecture 3 hrs., lab and problem solving sessions 6 hrs.) Course fee may be required.

140. General, Organic, and Biochemistry (5)
Prerequisites: A GE math course (may be taken concurrently); high school chemistry or equivalent.
This one-semester course encompasses general chemistry, organic chemistry, and biochemistry. Meets chemistry requirement for pre-nursing curriculum.
Letter grade only (A-F). (Lecture 3 hrs.; problem solving session 1 hr., and laboratory 3 hrs.) Course fee may be required.

251. Quantitative Analysis (4)
Prerequisite: CHEM 111B with a grade of "C" or better. It is strongly recommended that CHEM 251 be taken within one calendar year of CHEM 111B.
Introduction to techniques and theory of gravimetric and volumetric analysis, spectrophotometry, potentiometry, and chromatography.
Letter grade only (A-F). (Lecture 2 hrs., laboratory 6 hrs.) Course fee may be required.

UPPER DIVISION

302. Survey of Biochemistry (3) F,S
Prerequisites: A minimum of 3 units of university-level general and organic chemistry with grade of "C" or better.
Study of the chemistry, structures, metabolic reactions and functions of the major classes of biochemical compounds. Does not meet the requirements of medical or dental schools.
Letter grade only (A-F). Does not count for General Education credit. (Lecture 2 hrs., discussion 1 hr.)

320A. Organic Chemistry (3)
Prerequisite: CHEM 111B with a grade of "C" or better. CHEM 251 is recommended.
First semester of two-semester sequence (CHEM 320A and 320B). Sequence meets requirements for medical and dental schools. Emphasis is upon application of modern principles of
structure, reactivity, methods of synthesis, physical properties and spectroscopy.
Letter grade only (A-F). (Lecture 3 hrs., discussion 1 hr.)

320B. Organic Chemistry (5)
Prerequisite: CHEM 320A with a grade of "C" or better.
Second semester of two-semester sequence (CHEM 320A and 320B). Continuation of study of organic chemistry including chemistry of compounds containing more than one functional group, bioorganic molecules, and special topics.
Letter grade only (A-F). (Lecture 3 hrs., laboratory 6 hrs.) Course fee may be required.

320L. Organic Chemistry Laboratory (2) F,S
Prerequisites: Completion at an accredited institution of coursework equivalent to CHEM 322B, and consent of the Department.
CHEM 320L is identical to the laboratory component of CHEM 320B. Not open to students with credit in CHEM 320B. Letter grade only (A-F). (Laboratory 6 hrs.) Course fee may be required.

322A. Organic Chemistry (3) F,S
Prerequisite: CHEM 111B with a grade of "C" or better. Concurrent enrollment in CHEM 323A required except for students who have previously earned a "C" or better in CHEM 323A.
First of a two-semester sequence (CHEM 322A,B) for biological sciences majors. Sequence meets requirements for medical and dental schools. Emphasizes concepts of organic chemistry necessary to understand structures and transformations of biomolecules. Not applicable to a degree in chemistry.
Letter grade only (A-F). (Lecture 3 hrs.)

322B. Organic Chemistry (3) F,S
Prerequisites: CHEM 322A and CHEM 323A, both with a grade of "C" or better. Concurrent enrollment in CHEM 323B required except for students who have previously earned a "C" or better in CHEM 323B.
Second semester of two-semester sequence (CHEM 322A and 322B) for biological sciences majors. Continuation of the study of organic reactions with emphasis on the chemistry of metabolism. Not applicable to a degree in chemistry.
Letter grade only (A-F). (Lecture 3 hrs.)

323A. Organic Chemistry Laboratory (1) F,S
Prerequisite: CHEM 111B with a grade of "C" or better. Concurrent enrollment in CHEM 323A required except for students who have previously earned a "C" or better in CHEM 323A.
Introduction to organic laboratory techniques. Not applicable to a degree in chemistry.
Letter grade only (A-F). Course fee may be required. (Laboratory 3 hrs.)

323B. Organic Chemistry Laboratory (1) F,S
Prerequisites: CHEM 322A and CHEM 323A, both with a grade of "C" or better. Concurrent enrollment in CHEM 323B required except for students who have previously earned a "C" or better in CHEM 323B.
Synthesis and characterization of organic and bioorganic compounds. Not applicable to a degree in chemistry.
Letter grade only (A-F). (Laboratory 3 hrs.)

327. Fundamentals of Organic Chemistry (3) F,S
Prerequisite: CHEM 111A with a grade of "C" or better; CHEM 111B is recommended.
Lecture course in chemistry of the carbon compounds.
Letter grade only (A-F). Not applicable to a degree in chemistry. (Lecture 3 hrs.)

331. Inorganic Chemistry (3)
Prerequisites: CHEM 111B, 251 both with a grade of "C" or better.
Introduction to coordination chemistry, solid-state chemistry, and reactions of transition metals.
Letter grade only (A-F). (Lecture 3 hrs.)

332. Inorganic Chemistry Laboratory (2)
Prerequisite: CHEM 331 (may be taken concurrently).
Synthesis, characterization, and manipulation of inorganic compounds and materials.
Letter grade only (A-F). (Laboratory 3 hrs.)

361. Chemical Communications (3)
Prerequisites: GE Foundation requirement, concurrent or previous enrollment in CHEM 320A.
Using the chemical literature. Writing technical reports for various purposes. Oral presentation of chemical information. Includes extensive writing.
Letter grade only (A-F). (Seminar 3 hrs.)

371A. Physical Chemistry: Thermodynamics and Kinetics (3) F
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), MATH 224 (may be taken concurrently).
Half of the two semester physical chemistry package. The two courses, CHEM 371A,B, may be taken in either order. Principles and applications of classical thermodynamics; introduction to chemical kinetics.
Letter grade only (A-F). (Lecture 3 hrs.)

371B. Physical Chemistry: Quantum Mechanics and Spectroscopy (3) S
Prerequisites: CHEM 251, MATH 123, PHYS 152 (all with a grade of "C" or better), and MATH 224 (may be taken concurrently).
Half of the two semester physical chemistry package. The two courses CHEM 371A,B may be taken in either order. Principles and applications of quantum chemistry, spectroscopy, and statistical thermodynamics.
Letter grade only (A-F). (Lecture 3 hrs.)

373. Physical Chemistry Laboratory (3) S
Prerequisites: CHEM 251, CHEM 371A or CHEM 377A or 377B, all with a grade of "C" or better. Corequisite: CHEM 371B.
Introduction to basic physico-chemical experimental techniques with applications to principles discussed in CHEM 371A,B and CHEM 377A,B.
Letter grade only (A-F). (Lecture 1 hr., laboratory 6 hrs.)

377A. Fundamentals of Physical Chemistry (3) F,S
Prerequisites: CHEM 251, MATH 123, and PHYS 100B or 152 (all with a grade of "C" or better).
Half of the two semester physical chemistry package with a biochemical emphasis. The two courses CHEM 377A,B may be taken in either order. Principles of physical chemistry emphasizing thermodynamics and chemical kinetics. Biological and environmental science examples used to illustrate principles.
Letter grade only (A-F). (Lecture 3 hrs.)

377B. Fundamentals of Physical Chemistry (3) F,S
Prerequisites: CHEM 251, MATH 122, and PHYS 100B or 152 (all with a grade of "C" or better).
Half of the two semester physical chemistry package with a biochemical emphasis. The two courses CHEM 377A,B may be taken in either order. Principles of physical chemistry with emphasis on molecular structure and spectroscopy.
Letter grade only (A-F). (Lecture 3 hrs.)

420. Advanced Organic Chemistry Laboratory (3)
Prerequisites: CHEM 321, 320B, and either CHEM 361 or 466.
Synthesis and characterization of organic compounds. Organic structures analyzed through interpretation of spectral data. Emphasis on use of high field NMR, mass spectrometry, IR, and UV. Applications of modern separation techniques.
In addition to regularly scheduled lectures, students are expected to attend three hours of lecture on use of chemical literature. Letter grade only (A-F). (Lecture 1 hr., laboratory 6 hrs.) Course fee may be required.
421/521. Physical Organic Chemistry (3) F
Prerequisites: CHEM 320B with a grade of "C" or better; CHEM 371B or 377B (may be taken concurrently). (Undergraduates enroll in CHEM 421; graduates enroll in CHEM 521.)
Theoretical interpretation of chemical and physical properties of organic compounds: mathematical derivations of rate equations from experimental results, quantitative comparison of organic compounds reactivities, mathematical correlations of structure and properties. Solving problems relating to reaction mechanisms to described factors.
Letter grade only (A‑F). (Lecture 3 hrs., laboratory 6 hrs.) Course fee may be required.

466. Research Design and Methods (3) S
Prerequisites: BIOL 211, 212, 213, either BIOL 260 or CHEM 251, CHEM 320A.B or CHEM 322A.B and CHEM 323A.B all with a grade of "C" or better; GE Foundation requirement; a GPA of at least 3.0 in the major; and consent of the instructor. At least one unit of BIOL 496 or CHEM 496.
Corequisites: At least one unit of BIOL 496 or CHEM 496.
Introduction to hypothesis testing, experimental design, methodological and technical procedures for experimentation, grant writing, and techniques for written and oral presentation of research results. Research paper and oral presentation required.
Letter grade only (A‑F). Same course as BIOL 466. (Lecture 3 hours). Not open for credit to students with credit in BIOL 466, BIOL 466H or CHEM 466H.

480/580. Biomolecular Modeling and Simulation (3)
Prerequisites: CHEM 320A or 322A, MATH 123 (may be taken concurrently), and PHYS 100B or 152, all with a grade of "C" or better.
The study of biomolecular phenomena using computer-based modeling and simulation techniques with varying degrees of resolution, including development and validity of molecular models.
Letter grade only (A‑F). (Lecture 3 hrs.)

496. Undergraduate Directed Research (1-3)
Prerequisite: Consent of instructor.
Research in a specific topic in chemistry or biochemistry approved and directed by faculty. Written report required.
May be repeated to a maximum of 6 units. May be repeated for a letter grade to a maximum of three units. Units beyond the three must be taken Credit/No Credit. (Independent Study)

498H. Senior Thesis – Honors (1-3)
Prerequisites: CHEM 466; at least one unit of CHEM 496 with a grade of "A"; admission into the Honors in Chemistry program, and consent of instructor.
Planning, preparation, and completion of thesis based on a research project in chemistry or biochemistry.
Letter grade only (A‑F). Not available to graduate students.

499. Directed Reading (1)
Survey of chemical literature on some topic of current interest under supervision of a faculty member. Preparation of a written report based on readings.
Letter grade only (A‑F). Not open for credit to graduate students.

GRADUATE LEVEL

521/421. Physical Organic Chemistry (3) F
Prerequisites: CHEM 320B with a grade of "C" or better; CHEM 371B or 377B (may be taken concurrently). (Undergraduates enroll in CHEM 421; graduates enroll in CHEM 521.)
Theoretical interpretation of chemical and physical properties of organic compounds: mathematical derivations of rate equations from experimental results, quantitative comparison of organics compounds reactivities, mathematical correlations of structure and properties. Solving problems relating to reaction mechanisms to described factors.
Letter grade only (A‑F). (Lecture 3 hrs.)
523. Synthetic Methods (3)
Prerequisites: CHEM 320B with a grade of "C" or better; CHEM 521 recommended
Introduction to current methods of synthetic transformations; topics may include, but not limited to the following: Retrosynthetic analysis, protecting groups, functional group transformations, enolate chemistry, organometallics, stereochemistry and conformational analysis, pericyclic reactions, alkene functionalization and reactions of carbon nucleophiles.
Letter grade only (A-F). (Lecture 3 hrs.)

524. Catalysis in Organic Chemistry (3)
A study of catalysis beginning with a general theory of catalysis. The course also covers catalysis in synthetic organic chemistry centered on metals and ligated metals and catalysis centered on organic molecules as the catalytic species.
Letter grade only (A-F). (Lecture 3 hrs.)

525. Introduction to Supramolecular Chemistry (3)
Prerequisites: Proficiency in any of the following as demonstrated by ACS placement exam: Organic, Biochemistry or Inorganic Introduction to non-covalent interactions will be presented in the context of molecular recognition and self-assembly. Synthetic and biological examples will be used to understand these principles and how they can be applied to the preparation of new materials.
Letter grade only (A-F). (Lecture 3 hrs.)

531. Advances in Inorganic Chemistry (3)
Prerequisite: CHEM 431 or consent of instructor.
Current topics and advances in inorganic chemistry.
May be repeated to a maximum of 6 units with different topics.
Letter grade only (A-F). (Lecture 3 hrs.)

532. Inorganic Materials Chemistry (3)
Prerequisite: CHEM 431 or consent of instructor.
Advanced studies in bonding in solids, crystal structure variations, band theory and electronic structure, crystal structure-electronic structure-physical properties relationship, electron transport properties, magnetic materials, materials by design for technological applications.
Letter grade only (A-F). (Lecture 3 hrs.)

533. Physical Techniques in Inorganic Chemistry (3)
Prerequisite: CHEM 431 or consent of instructor.
An introduction to physical techniques commonly used in inorganic chemistry with focus on the magnetic resonance spectroscopic techniques: EPR and multinuclear NMR.
Letter grade only (A-F). (Lecture 3 hrs.)

534. Crystal Structure Analysis (3)
Prerequisite: CHEM 431 or consent of instructor.
An introduction to structural methods commonly used in inorganic chemistry with focus on single crystal and powder X-ray diffraction.
Letter grade only (A-F). (Lecture 3 hrs.)

541. Biochemistry Core for Graduate Study (3)
Prerequisites: CHEM 441A, B
The course is divided into three topics: (i) structure and evolution of proteins and their complexes with nucleic acids, lipids and carbohydrates, including structure determination methods; (ii) metabolic regulation from mechanistic and physiological viewpoints; (iii) applications of biochemical methodologies.
Letter grade only (A-F). (Lecture 3 hrs.)

542. Selected Topics in Biochemistry (3)
Prerequisite(s): CHEM 441B and 541 all with a grade of "C" or better, or consent of instructor.
Intensive discussion of a limited aspect of biochemistry with reference to current literature. Course content will vary from year to year.
May be repeated to a maximum of 6 units with different topics in different semesters. Topics announced in the Schedule of Classes.
Letter grade only (A-F).

544. Physical Biochemistry (3)
Prerequisites: Either CHEM 371A,B or 377A,B; 441B; 541 all with the grade of "C" or better; or consent of instructor.
Physical chemical aspects of protein and nucleic acid chemistry and related analytical methods.
Letter grade only (A-F). (Lecture 3 hrs.)

546. Protein Structure and Function (3)
Prerequisites: Either CHEM 371B or 377B; and both 441A and 541 with the grade of "C" or better; or consent of instructor.
Principles of protein structure, folding, and function. Includes techniques used for the production, isolation and characterization of proteins.
Letter grade only (A-F). (Lecture 3 hrs.)

548. Cell Membranes (3)
Prerequisites: BIOL 340, 370, CHEM 441A, 541 with the grade of "C" or better; or consent of instructor.
Examination of modern membrane biochemistry. May include membrane structure and transport, phospholipids sorting, vesicular transport, membrane coat protein structure and function, and membrane-dependent signal transduction.
Letter grade only (A-F). (Lecture 3 hrs.)

552. Selected Topics in Analytical Chemistry (3)
Prerequisite: CHEM 451 or consent of instructor.
Including electrochemical measurements, chromatographic techniques, spectroscopic techniques, radiochemical analysis and basic electronic components of instrumentation. Emphasizing the chemical principles involved, utility and limitations of each method. Includes trace analysis of water and air.
Letter grade only (A-F). May be repeated to a maximum of 6 units with different topics. Topics announced in the Schedule of Classes.
(Lecture 3 hrs.)

553. Fundamentals of Electroanalytical Chemistry (3)
In-depth description of electrochemical processes and research techniques. Voltammetric, potentiometric, and impedance methods. Scanning probe techniques. Analysis of current research literature related to electroanalytical chemistry and surface science.
Letter grade only (A-F). (Lecture 3 hrs.)

572. Advanced Physical Chemistry (3)
Prerequisite: CHEM 371B or consent of instructor.
Special topics in physical chemistry.
May be repeated to a maximum of 6 units with different topics.
Letter grade only (A-F). (Lecture 3 hrs.)

573. Molecular Spectroscopy (3)
Prerequisite: CHEM 371B or consent of instructor.
Letter grade only (A-F). (Lecture 3 hrs.)
574. **Kinetics and Dynamics (3)**
Prerequisite: CHEM 371A or consent of instructor.
Reaction rates for chemical systems; dependence on concentration and temperature. Derivation of the mechanisms of chemical reactions. Kinetic theory and analysis of experimental results for different systems. Dynamics of chemical reactions; transition state theory, potential-energy surfaces, and reaction pathways.
Letter grade only (A-F). (Lecture 3 hrs.)

580./480. **Biomolecular Modeling and Simulation (3)**
Prerequisites: CHEM 320A or 322A; MATH 123 (may be taken concurrently); PHYS 100B or 152, all with a grade of "C" or better.
The study of biomolecular phenomena using computer-based modeling and simulation techniques with varying degrees of resolution, including development and validity of molecular models.
Letter grade only (A-F). (Lecture 3 hrs.)

581. **Biological Performance of Materials (3)**
Advance studies of the chemical and mechanical interactions between materials used in medical devices and implants and living organisms. The course content includes materials response to biological system and host response to biomaterials.
Letter grade only (A-F). (Lecture 3 hrs.)

595A. Colloquium in Biochemistry (1)

595B. Colloquium in Organic Chemistry (1)

595C. Colloquium in Analytical, Physical and Inorganic Chemistry (1)
Prerequisite: Graduate standing or consent of instructor.
Discussion of advances as reported in recent literature. Provides experience in library use, organization, presentation, and critical evaluation of the chemical literature.
May be repeated up to a maximum of 3 units, not more than a total of 3 units may be earned in any combination of CHEM 595 courses.
Letter grade only (A-F). (Seminar 1 hr.)

660. **Seminar in Chemistry (1)**
Weekly meetings for presentation and discussion of advanced work in special fields including original research by faculty and graduate students.
Credit/No Credit grading only. (Seminar 1 hr.) May be repeated to a maximum of 3 units.

695. **Directed Reading (1)**
Survey of information in chemical literature on a current research topic, under direction of a faculty member. Written report prepared from these readings.
Letter grade only (A-F).

697. **Directed Research (1-6)**
Prerequisite: Arrangement with instructor.
Laboratory work supervised on an individual basis. A written report will be required.
Credit/No Credit grading only. May be repeated to a maximum of 6 units in different semesters.

698. **Thesis (1-6)**
Prerequisites: Advancement to candidacy for M.S. in Chemistry or M.S. in Biochemistry and arrangement with instructor.
Planning, preparation and completion of a thesis in chemistry or biochemistry.
Letter grade only (A-F).