Do three problems from each part, for a total of six problems.

PART A

1. Use appropriate theorems or techniques of complex analysis to show that

\[\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2} \]

2. (a) State Rouche’s Theorem.
 (b) Consider the equation \(z^5 + 8z + 3 = 0 \).
 How many roots of this equation are inside the open unit disk?
 (c) How many roots of this same equation are inside the annulus
 \(A = \{ z : 1 < |z| < 2 \} \)?

3. Find the Laurent series for the function \(f(z) = \frac{e^{2z} - 1}{z^4} \) that is valid on a punctured neighborhood of zero. Determine on what set this series converges and find the residue of \(f \) at zero.

4. Compute \(\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 5x^2 + 4} \, dx. \)
 Hint: first show that it is equal to \(\int_{-\infty}^{\infty} \frac{e^{ix}}{x^4 + 5x^2 + 4} \, dx. \)

5. (a) State the Cauchy-Riemann equations.
 (b) Suppose \(u(x, y) = xe^x \cos y - ye^x \sin y \). Find \(v \) such that \(u + iv \) is analytic.
6. A Möbius transformation \(\varphi : \mathbb{C}_\infty \to \mathbb{C}_\infty \) is a function of the form \(\varphi(z) = \frac{az+b}{cz+d} \), where \(a, b, c, d, \in \mathbb{C} \) and \(ad - bc \neq 0 \). Let \(D = \{ z : |z| < 1 \} \) be the open unit disk.

(a) Let \(\varphi(z) = \frac{1}{z-1} \). Describe \(\varphi(D) \), the image of \(D \) under \(\varphi \). Justify your answer.

(b) Find a Möbius transformation \(\varphi \) satisfying \(\varphi(D) = D \) and \(\varphi\left(\frac{1}{2}\right) = \frac{3}{4} i \).

7. (a) Let \(f \) be analytic on a nonempty region \(G \). Prove that if \(|f(z)| = 1 \) for all \(z \in G \), then \(f \) is a constant.

(b) Let \(f \) be an entire function. Prove that if \(|f(z)| \leq e^{\operatorname{Re} z} \) for all \(z \in \mathbb{C} \), then there exists a constant \(|c| \leq 1 \) such that \(f(z) = ce^{z} \) for all \(z \in \mathbb{C} \).

8. (a) State Morera’s Theorem.

(b) Let \(\{ f_n \} \) be a sequence of analytic functions on a region \(G \). Let \(f \) be a continuous function on \(G \). Prove that if \(f_n \to f \) uniformly on every compact subset of \(G \), then \(f \) is analytic on \(G \).

9. Suppose \(g(z) = \frac{P(z)}{Q(z)} \) is a rational function (a polynomial divided by a polynomial) such that the degree of the denominator is at least two greater than the degree of the numerator. Prove that sum over all poles of the residues of \(g \) is zero. (Hint: use an integral over a large circle.)

10. Suppose that \(f(z) \) is analytic on \(H = \{ z : \operatorname{Re} z > 0 \} \) and that \(|f(z)| \leq 1 \) for all \(z \in H \). Prove that \(|f'(z)| \leq \frac{1}{\operatorname{Re} z} \) for all \(z \in H \).