MODULE I

Introduction to Bioterrorism

Bioterrorism Training and Emergency Preparedness (BTEP) Curriculum

Department of Health Science
California State University, Long Beach
January 2007
The Bioterrorism Training and Emergency Response Curriculum

The Bioterrorism Training and Emergency Response Curriculum was developed to educate students and the public on information regarding bioterrorism preparedness and emergency response. Through the Bioterrorism Training Curriculum Development Project funded by the Health Resources Services Administration (HRSA), 12 modules were selected to be utilized in classes at the Departments of Health Science, Health Care Administration, Nursing, and Professional Studies in the College of Health and Human Services at California State University, Long Beach. These modules were modified to include local, countywide, and statewide information as well as information from various community agencies and public health departments. Instructors are encouraged to use portions or all of the material freely for its intended purpose.

TERMS OF USE

This material was originally developed by the Northwest Center for Public Health Practice, at the University of Washington, School of Public Health & Community Medicine for educational purposes. Permission has been obtained to copy, adapt, and distribute for non-commercial use only.
Acknowledgements

This curriculum is a collaborative effort among the four departments in the College of Health and Human Services namely, Health Science, Health Care Administration, Nursing, and Professional Studies.

Thanks to our project collaborators, to all those who provided feedback on the content, material selection and/or technical assistance, to our consultants, our website designers and developers, and most of all to OUR STUDENTS for their unflinching work, persistence and patience in helping to bring this project together.

THE BIOTERRORISM TRAINING AND CURRICULUM DEVELOPMENT PROJECT GROUP

Project Director:

Veronica Acosta-Deprez, PhD, CHES
Department of Health Science
California State University, Long Beach

Project Co-Directors:

Sarath Gunatilake, MD, DrPH
Department of Health Science
California State University, Long Beach

Mohammed Forouzesh, PhD
Department of Health Science
California State University, Long Beach

Project Co-Collaborators:

Robert Friis, PhD, Chair
Mohammed Forouzesh, PhD, Graduate Director
Department of Health Science
The following people provided feedback on the content, material selection and/or technical assistance:

Charles W. Clark, Chief of School Safety and Emergency Preparedness, Long Beach Unified School District
Kathy Crow, RN, St. Mary’s Hospital, Disaster Resource Center, Long Beach
Elizabeth Cross, Orange County Health Care Agency
Sue Donelson, MPH, California State University, Long Beach
Vanessa Garcia, Orange County Health Care Agency
Lisa Grabhorn, MPH California State University, Long Beach
Jee Kim, MPH, County of Los Angeles Public Health Department
Hang Nguyen, MPH Orange County Health Care Agency Bioterrorism Preparedness Unit
Hanan Obeidi, MPH, Long Beach Health Department, coordinator, Bioterrorism Preparedness Coordinator
Phil Falcetti, MPH, Orange County Health Care Agency
Steve Raginold, Captain, Long Beach Fire Department
Ibtisam Sirhan, MPH California State University, Long Beach
John Van Sky, PhD, Director, Orange County Public Health Department, Bioterrorism Preparedness Unit

Consultants:

Palitha Abeykoon, MD, World Health Organization, Sri-Lanka
Ron Arias, MPA, Director, City of Long Beach Health and Human Services
Curt Bonk, PhD, Instructional Systems Technology Department, Indiana University, Bloomington, Indiana
Joseph Carlucci, MD, World Health Organization
Thushara Fernando, MD, World Health Organization, Sri-Lanka
Ravindu Gunatilake, MD, University of Hawaii- Manoa
Indika Karunathilake, MD, Faculty of Medicine, Colombo, Sri Lanka
J. M Peiris, MD, University of Hong Kong
Emelinda Parentela, PhD, Department of Civil Engineering, California State University, Long Beach

Students:
Sherlene Gatdula, BS, Department of Health Science
Cindy Gotz, MPH Candidate, Department of Health Science
Shirley Jensen, RN, PHN, MPH Candidate, Department of Health Science
Bow Lee, MPH candidate, Department of Health Science
Kristina Mayuga, BS, Department of Health Science
Kristine Talavera, BS candidate, Department of Health Science
Riza Tamayo, BS, Department of Health Science
Jevie Tomillos, BS candidate, Department of Health Science

Website design and development:
Yiubun Liu, MS candidate, Civil Engineering Department
Marvin Mayo, University College Extension Services, California State University, Long Beach Foundation
Francisco Romero, University College Extension Services, California State University, Long Beach Foundation
Table of Contents

About This Module..7

How to Use This Manual..8

Introduction to Bioterrorism...9

Learning Objectives (Slide 4)...10

What Is Bioterrorism? (Slides 5-8) ...11

History of Bioterrorism (Slides 9-11) ..13

Recognition of a BT Event (Slides 12-17) ...14

Public Health Response to a BT Event (Slides 18-21) ...17

Potential Roles for Public Health Workers in

BT Response (Slides 22-28). ..19

Summary of Key Points (Slide 29) ...20

Resources (Slides 30-32) ...21

In Case of an Event (Slides 33-34) ...21

Review Questions ...22

References ...24

Appendix A: Modules...34
About This Module

This is one of a series of modules in a curriculum developed to provide a basic understanding about bioterrorism preparedness and response, and how public health fits into the overall purpose. The target audience for this module includes students in the four collaborating departments: Health Science, Health Care Administration, Nursing, and Professional Studies at California State University, Long Beach. Instructors are encouraged to use portions or all of the material freely for its intended purpose.

This module was originally developed by the Northwest Center for Public Health Practice in Seattle, Washington. However, modifications have been made in the format as well as in the addition of other information from local (Greater Long Beach), countywide (Los Angeles and Orange counties), and state (California) resources in order to be more relevant to our target audience and applicable to the local setting. This module incorporates information from a wide variety of sources including the Centers for Disease Control and Prevention, the Federal Emergency Management Agency, the Working Group on Civil Biodefense, the United States Army Medical Research Institute in Infectious Disease (USAMRIID), and public health departments including Long Beach Department of Health Services, Los Angeles County Public Health Department, Orange County Health Care Agency, and the California Department of Health Services, among others.

This module is not copyrighted and may be used freely for the education of students and public health employees, and other partners working within bioterrorism and emergency response.
How to Use This Manual

This manual provides the instructor with additional useful information related to the accompanying MS PowerPoint® slides. The manual and slides are divided into twelve topic areas: Introduction to Bioterrorism, Planning for Emergency Response, Overview of Diseases, Bioterrorism Surveillance and Epidemiologic Response Plan, Consequence Management: Public Health Leaders, Consequence Management: Public Health Staff, Consequence Management: Other Public Health Staff, Risk Communication, Public Health and the Law, Incident Command System and The Anarchist: Tabletop Exercise. Links to Web sites of interest are included in the lower right-hand corner of some slides and can be accessed by clicking the link while in the “Slide Show” view. Blocks of material in the manual are periodically summarized in the “Key Point” sections, to assist the instructor in deciding what material to include in a particular presentation.
Summary of Key Points (Slide 29)

1. A bioterrorist attack is likely to be covert.
2. First responders in a covert attack are likely to be health care providers.
3. Public health workers will use many of the same skills in response to a bioterrorism incident as they do in a routine workday.
4. The manner in which job skills are implemented will potentially differ from a routine workday.

Slide 3: Module Title
Learning Objectives (Slide 4)

The learning objectives for this module are:

1. Define bioterrorism (BT)
2. Describe the potential characteristics of a BT event
3. Describe the general public health response to a BT event
4. Identify and describe your potential roles and responsibilities in a BT event
What Is Bioterrorism (Slides 5-8)

KEY POINTS

1. Biological agents producing either high mortality or low mortality, but moderate-high morbidity, are capable of creating significant terror and disruption in society.

2. A bioterrorist attack may be announced, but is more likely to be unannounced (covert).

3. Health care providers may be the first to recognize victims of a covert attack.

Bioterrorism (BT) is terrorism involving the use of biological weapons, i.e., microbes or biologically derived toxins to inflict disease on humans. Terrorists seek to create fear and consequent disruption in society. The number of cases and deaths may be large, although terrorism achieves fear and societal disruption out of proportion to the actual damage done by the attack, as illustrated in the 2001 anthrax outbreak on the East Coast of the United States. Biological agents producing both high mortality and low mortality with moderate-high morbidity are included among the CDC-identified “critical agents” of concern (to be discussed in the module on diseases of BT potential). Although terrorists ultimately seek to create terror in other humans, their activities may produce death or disease in plants and animals.

What Is Bioterrorism? Definition

• Terrorism (FBI definition): “The unlawful use of force or violence against persons or property to intimidate or coerce a government, the civilian population, or any segment of it, in furtherance of political or social objectives.”

• The intentional use of micro-organisms or toxins derived from living organisms to produce death or disease in humans, animals, or plants

• The goal of bioterrorism is to produce fear in the population with subsequent disruption of society
Animals and humans may both become infected through the intentional release of a biological agent in the environment, or animals and plants may be infected or contaminated for the purpose of infecting humans via the food supply.

A bioterrorist attack can be either announced (overt, slide 7), or unannounced (covert, slide 8). The first scenario may result in a response similar to that of other overt emergencies, such as chemical spills and fires. The second scenario (covert) is thought to be the more likely scenario in a bioterrorist incident. The first casualties are likely to be discovered by health care providers, as opposed to traditional emergency first-responders such as fire and HAZMAT teams.
History of Bioterrorism (Slides 9-11)

KEY POINTS

1. Biological agents have been used in the past for offensive purposes.
2. Biological weapons programs existed in many countries prior to 1972 and most likely continued to exist in some countries beyond that time.
3. Although the United States no longer has an offensive biological weapons program, a defensive program has been active since 1953.

Bioterrorism is not a new concept. The use of biological agents for offensive purposes has been documented as far back as the 6th century BC. Historical examples of biological warfare are noted in slide 9, and more recent examples of their use in terrorist activity in slide 10. Many of the biological agents considered to have potential for use in terrorist activity are agents that have been used before in biological warfare or were known to have been studied for that purpose prior to the Biological Weapons Convention in 1972.
The United States actively studied biological agents for their use in warfare, from 1943 to 1969, when President Nixon ended the offensive arm of the program by executive order. By May 1972, all stockpiles of biological agents and munitions from the U.S. program had been destroyed. A treaty was signed that year by over 140 countries, agreeing not to stockpile or conduct research on biological weapons for offensive purposes. The USSR signed, but did not adhere to, this treaty; and their offensive program continued until the dissolution of the Soviet Union in 1992. It is suspected that other countries also did not adhere to the provisions of the treaty.

The U.S. defensive biological weapons program to develop prophylactic and treatment interventions began in 1953 and continues today at the U.S. Army Medical Research Institute of Infectious Disease (USAMRIID), in Fort Detrick, Maryland.

Recognition of a BT Event (Slides 12-19)

KEY POINTS

1. According to California State law (Title 17, CCR 2505), all suspected cases of illness caused by potential bioterrorism agents are immediately reportable to the local health jurisdiction.

2. Most diseases caused by potential bioterrorism agents present initially with a non-specific or flu-like illness.

3. Being alert to unusual clusters of illness and familiar with epidemiological clues suggesting a potential bioterrorism event are important to allow early recognition of a bioterrorist event.
Surveillance/Detection (Slide 12):

Surveillance systems play an important role in BT recognition by documenting baseline levels of disease and illness in a community and detecting case numbers and patterns that differ from typical. BT events are most likely to be covert, and lag times between exposure and disease development in the index case (i.e., incubation period), transmission to others (if person-person transmission exists), and laboratory diagnosis present a challenge in source identification and response. Health care providers also play an important role in recognizing a BT event by being alert to, and reporting to public health, suspicious cases or clusters of illness in their clinical practice.

General Characteristics (Slide 13):

Most of the identified agents with bioterrorist potential produce an initial non-specific (slide 13 (e.g., fever, malaise, GI distress) and/or “influenza-like” illness—a common presentation that might not be recognized as atypical until the illness has progressed further. Because an effective mode of intentional dissemination for a biological agent is the aerosol route, pneumonia is another likely presentation.

Aerosol dissemination is “ideal” because it has the potential to expose a large number of people in a short period of time when released in a densely populated area. Aerosols can be imperceptible to the senses, and thus individuals unaware of the presence of danger would not know they had been infected until symptoms began. A certain degree of sophistication, however,
is required for aerosol production (the degree differing by agent); particles need to be between 1-5 microns to settle in the lungs.

Contamination of the food supply is another potential mode of biological agent dissemination. It is thought that a biological attack involving a community water supply would be unlikely because of dilution effects in reservoirs and the use of chlorination and filtration. Infiltrating smaller water distribution systems with infectious agents or toxins may be a more likely scenario.

Epidemiologic Clues (Slides 14-15)

Single case of disease due to an uncommon agent. For example, anthrax cases do occur spontaneously among humans in the United States, but infrequently, and typically as an occupational exposure in those working with infected animals or animal products. A single case of anthrax in someone without a known animal exposure would, therefore, warrant investigation.

Unexpected geographic or seasonal distribution of disease
For example, plague occurs mainly in the Southwestern US, but is extremely rare in Oregon State.

Unusual age distribution
(e.g., adults with a chickenpox-like rash illness)

Illness in persons sharing a common ventilation system or other exposure
(i.e., an aerosol release indoors would create an exposure for all using the same ventilation system)

Atypical route of transmission
For example, botulism occurs when C. Botulinum spores release toxin under anaerobic conditions, such as improperly canned food or in wounds. Aerosol botulism does not occur naturally, and a botulism-like illness with no apparent food vehicle would suggest a deliberate source of infection.

Slides 16-17 summarize disease reporting requirements in California.
Recognition of BT Event
Surveillance/Detection

- By California State statute
- Medical Examiner (Government Code, State of California section 27491)

California State University, Long Beach

Public Health Response to a BT Event (Slides 18-27)

Key Points
1. Public health workers will use many of the same skills in response to a bioterrorism incident that they use in a routine workday.
2. Potential differences between a routine public health workday and the response to a bioterrorism event include the coordination of activities with different agencies such as law enforcement and the size and scope of response efforts.

For the most part, the response of public health to a bioterrorism incident is similar to the response to other public health emergencies. Workers will use the same job-related skills required of them on a daily basis, but the size and scope, time frame, involved partners, and security precautions may differ from that of a typical day. The criminal nature, the potentially covert presentation, and the potentially large numbers of casualties each present a challenge to the public health response in a bioterrorism incident. Public health workers may be called upon to address the needs of the public for information and education, resource referral, medications and immunizations in larger numbers than typical, within a more concentrated time period, and in a higher state of stress.

Public Health Response to a BT Event
General Characteristics

- Old skills applied in new ways
 – Disease/illness investigation
 – Informing and educating the public
 – Providing medications and immunizations
 – Referring and connecting people to resources
 – Informing and educating health care workers
 – Enforcing laws that protect the public’s health
 – Coordinating activities with other agencies
Public Health Response to a BT Event

General Characteristics

- ...with a few additional factors
 - Coordination of activities with local law enforcement and FBI
 - Preservation of evidence
 - Early notification and involvement of federal health officials
 - Epidemiologic characteristics of disease may differ from typically expected

Law enforcement has chain of custody procedures (i.e., to preserve evidence) that may influence when and where public health workers can gather information for their investigation (i.e., epidemiologists conducting surveys, environmental health workers conducting site investigations, etc.). The need to preserve evidence and security may also influence what information is released and when.

Public health workers may need security clearance to enter the crime scene or, at the very least, identification. Agents used in BT may have engineered resistance to the usual treatment (i.e., antibiotics); the population exposed and the time of year may differ than that typically seen.

Key Preparedness Elements (Slides 20-21)

- Hazard Analysis
 - Determining what emergencies might occur & the availability of local resources for emergency response
- Emergency Response Planning
- Health Surveillance and Epidemiologic Investigation
 - Monitoring the health status of the community & investigating when it differs from expected

- Laboratory Diagnosis and Characterization
 - Identifying the cause of illness

- Consequence Management
 - Responding to the emergency
 - Immediate response & long-term recovery

The key preparedness elements listed in slides 20 and 21 come from the Center for Disease Control’s Interim Planning Guidance for State Public Health Officials. Although the guide was written for state public health officials, each of the elements has applicability at the local level. The preparedness elements, with the exception of laboratory diagnosis and characterization, are discussed in varying levels of detail (depending on the target audience) in the other modules included in this curriculum.
Potential Roles for Public Health Workers in BT Response

Clinical Staff
- Dispensing mass antibiotic prophylaxis
- Administering mass immunizations
- Triaging (e.g., phone calls or clinic visits) and referring individuals as appropriate
- Referring individuals to social support and informational resources
- General counseling and reassurance of anxious clients
- Assisting in conducting interviews during disease investigations and follow-up

Epidemiologists and Communicable Disease Staff
- Assisting communicable disease epidemiologists in disease investigation:
 - Case interviewing and data collection
 - Data entry and analysis
 - Case contact tracing and identification
 - Case follow-up

Public Health Leaders
- Emergency response planning
- Activation of the emergency response plan
- Supervising and coordinating public health efforts
- Coordination and communication with other agencies
- Providing information to the media and general public
- Risk communication

Public Health Information Staff
- Educating and informing the public on BT health risks and response efforts (including dispelling myths)
- Assisting in the development of press releases
- Referring individuals to social support and informational resources
- General counseling and reassurance of anxious clients

Assessment Coordinators
- Assisting communicable disease epidemiologists in disease investigation
- Assisting in the creation and dissemination of press releases, health alerts, and other informational resources
- Coordination and communication with other agencies
- Identifying populations in the community that may require special services in the event of an emergency

Technical and Support Staff
- Answering phone calls
 - Delivering critical baseline information
 - Referring calls as appropriate
- Assisting in the creation and dissemination of press releases, health alerts, and other informational resources
- Arranging sites for delivery of mass immunizations or antibiotics
- Coordinating delivery of lab specimens
A variety of activities are required to ensure the health and safety of the public. In routine public health practice, workers perform different tasks, depending on their specific job category; and for the most part, tasks performed in a bioterrorism event can also be expected to reflect specific job categories. Workers may be called upon to assist in areas outside of their usual “job description” (e.g., answering phones, making deliveries), but not outside their scope of training (i.e., non-medically trained individuals would not be expected to give medical advice). Slides 22-28 list potential roles for epidemiologists, public health nurses, managers/administrators, assessment coordinators, administrative staff, health educators, and environmental health workers in the public health response to a biological terrorism incident. Note that these are potential roles. The scope of responsibility for any one worker will vary depending on the size, organization, and location of the department.

Summary of Key Points (Slide 29)
General Resources (Slides 30-32)

Resources

- Centers for Disease Control & Prevention
 http://www.bt.cdc.gov
- Federal Emergency Management Agency
 http://www.fema.gov
- Johns Hopkins Center for Civilian Biodefense
 Studies fact sheets and links to other info, including JAMA series from Working Group on
 Civilian Biodefense
 http://www.hopkins-biodefense.org
- USAMRIID

State of California Emergency Preparedness
Office
http://www.dhs.ca.gov/eppo/EPOIndex.htm
Los Angeles County Department of Public Health
800-397-3993 (communicable disease reporting system)
http://lapublichealth.org/acd/cdrs.htm or To
report a possible bioterrorist incident contact
ACDC Bioterrorism and Response at 213-240-7941

In Case of An Event…
Web Sites with Up-to-Date Information and Instructions

- Centers for Disease Control and Prevention
 http://www.bt.cdc.gov/EmContact/index.asp
- Level A Lab Protocols: Presumptive Agent ID

In Case of An Event…
Web Sites with Up-to-Date Information and Instructions

- FBI Terrorism Web Page
 http://www.fbi.gov/terrorism/terrorism.htm
- Mail Security
- NIOSH – Worker Safety and Use of PPE
 http://www.cdc.gov/niosh/emres01.html
Module 1-Introduction to Bioterrorism
Review Questions

1. A bioterrorist attack is most likely to be overt. True or False?

2. Public health workers will use many of the same skills in response to a bioterror incident as they would in the normal course of their day. True or False?

3. According to the FBI bioterrorism is defined as

4. A Bioterror attack affects
 a. People
 b. Animals
 c. Plants
 d. All of the above

5. Casualties in a covert bioterrorist event are most likely to be discovered by?
 a. Police/Fire
 b. HAZMAT
 c. Health Care Worker
 d. All of the above

6. The development of bioterrorism as a method of intimidation is a relatively (last 25 years) new concept. True or False?

7. List 3 things that present a challenge in source identification and response to a bioterror agent exposure.

8. List epidemiological clues which might suggest a bioterror event.
Answer Key

1. False
2. True
3. Unlawful use of force or violence against persons or property to intimidate or coerce a government, the civilian population or any segment of it, in furtherance of political or social objectives.
4. D
5. C
6. False
7. Lag times between exposure and disease development in the index case (i.e., incubation period), transmission to others (if person-person transmission exists), and laboratory diagnosis.
8. Single case of disease due to an uncommon agent, unexpected geographical or seasonal distribution of disease, unusual age distribution, illness in persons sharing a common ventilation system or other exposure, atypical route of transmission, unusual illness among animals preceding or accompanying human illness.
References

General Bioterrorism Information and Web Sites

24

Emergency Response Planning

Center for Health Policy, Columbia University School of Nursing. Bioterrorism and emergency preparedness home page February 2007 http://www.nursing.columbia.edu/chphsr/btcomps.html

City of Long Beach Disaster Management Home page. February 2007 http://www.ci.long-beach.ca.us/fire/emergency_prep/default.asp

Health Surveillance and Epidemiologic Investigation

CDC. Case definitions under public health surveillance. MMWR; 1997:46(RR-10):1-55.

Diseases of Bioterrorist Potential

Advisory Committee on Immunization Practices (ACIP). Use of smallpox (vaccinia vaccine), June 2002: supplemental recommendation of the ACIP.

Webcast: http://www.sph.unc.edu/academics/webcasts.html?webcast=event

Webcast: http://www.sph.unc.edu/academics/webcasts.html?webcast=event

CDC. Considerations for distinguishing influenza-like illness from inhalational anthrax. MMWR 2001;50(44):984-986.

Centers for Disease Control and Prevention. Smallpox vaccination and adverse events training module, 2002.
http://www.bt.cdc.gov/training/smallpoxvaccine/reactions/default.htm

Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United
Working Group on Civilian Biodefense Consensus Recommendations:

Environmental Sampling and Decontamination

CDC. Protecting investigators performing environmental sampling for Bacillus anthracis: personal protective equipment. http://www.bt.cdc.gov/agent/anthrax/

CDC. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. MMWR. 2001;50(48):1087.

Consequence Management

http://www.cdc.gov/ncidod/eid/index.htm

CDC. Interim recommendations for the selection and use of protective clothing and respirators against biological agents
http://www.bt.cdc.gov/DocumentsApp/Anthrax/Protective/10242001Protect.asp

Psychological Aftermath of Trauma

http://www.psych.org

Department of Health and Human Services, Substance Abuse and Mental Health Services Administration Center for Mental Health Services. Disaster manual for mental health and human services workers in major disasters.
http://www.mentalhealth.org/cmhs/EmergencyServices/fpubs.asp

Communication and Informatics

Agency for Toxic Substances and Disease Registry. A primer on health risk communication principles and practices.
http://www.atsdr.cdc.gov/HEC/primer.html

http://www.sph.unc.edu/about/webcasts.html?webcast=2001-12-06_risk&action=view

Covello T, Peters RG, Wojtecki JG, Hyde RC. Risk communication, the West Nile Virus epidemic, and bioterrorism: responding to the communication challenges posed by the intentional or unintentional release of a pathogen in an urban setting. J Urban Health: Bulletin of the NY Academy of Medicine 2001;78(2):382-391.

Public Health and the Law

California Department of Health Services, Title 17, California Code of Regulations (CCR), Section 2505 - REPORTABLE CONDITIONS: NOTIFICATION BY LABORATORIES
http://www.dhs.ca.gov/dcdc/disp/pdf/Title%2017%20lab%20reportable%20conditions.pdf

http://www.acgov.org/ems/Resource/Coroners_cases.PDF

http://www.publichealthreports.org/userfiles/120_SUP1/120020sup.pdf

http://www.nwcphp.org/docs/edu/iphl/module/

Table Top Exercise – Tsunami

PEOPLE

Seiji Yamada, MD, MPH seiji@hawaii.edu
WEBSITES

Oberle, Mark. Tsunami, December 26, 2004 at Patong Beach, Phuket, Thailand:
Personal Notes from Mark Oberle, U WSPH Professor.

Pacific Health Summit. Declaration of the Pacific Health Summit for Sustainable Disaster Risk Management, Honolulu, Hawaii, June 14-18, 2004
http://www.cdc.gov/nceh/ierh/Declaration%20of%20the%20Pacific%20Health%20Summit.htm

Sen, Amartya. Ethics, development, and disaster.
http://www.iadb.org/etica/sp4321/DocHit.cfm?DocIndex=2062

World Health Organization. South Asia earthquake and tsunamis.

JOURNAL ARTICLES

Keim, Mark (ed.). Pacific Health Dialog 2002 Mar; 9(1).

MacDonald, Rhona. How women were affected by the tsunami: a perspective from
According to a survey recently carried out by Oxfam, four times as many women than men were killed in the tsunami-affected areas of Indonesia, Sri Lanka, and India.

Appendix A: Glossary

Bulbar: Referring to the cranial nerves

Coagulopathy: A disease affecting the coagulability (clotting) of the blood

Confluent: Joining, running together

Conjunctivitis: Inflammation of the conjunctiva; “red eye”

Depigmentation: Loss of pigmentation (color)

Diplopia: Double vision

Dyspnea: Shortness of breath

Edema: An accumulation of an excessive amount of watery fluid in cells or tissues

Enanthem: A mucous membrane eruption (rash)

Epistaxis: Nose bleed

Erythema: Redness

Eschar: A thick, coagulated crust or slough

Exanthem: A skin eruption (rash) occurring as a symptom of an acute viral or cocci al disease

HAZMAT: Hazardous materials management; HAZMAT workers respond to discharges and/or releases of oil, chemical, biological, radiological, or other hazardous substances.

Hematemesis: Vomiting of blood

Hemoptysis: Coughing up blood

Hemorrhagic mediastinitis: Bloody inflammation in the chest cavity

Hypotension: Low blood pressure

Indolent ulcer: Chronic ulcer, showing no tendency to heal

Lymphadenitis: Inflammation of a lymph node or lymph nodes
Lymphadenopathy: A disease process (e.g., swelling) affecting a lymph node or nodes

Macule: A small, discolored patch or spot on the skin, neither elevated above nor depressed below the skin's surface

Malaise: General ill feeling

Myalgia: Muscle aches

Papule: A small, circumscribed solid elevation on the skin

Percutaneous: Denoting the passage of substances through unbroken skin; passage through the skin by needle puncture

Petechiae: Pin-head sized hemorrhagic spots in the skin

Pharyngitis: Inflammation of the tissues of the pharynx; “Sore throat”

Pleuropulmonary: Relating to the pleura and the lungs

Preauricular: Anterior to the auricle of the ear

Prodrome: An early or premonitory symptom of a disease

Prophylaxis: Prevention of a disease, or of a process that can lead to disease

Prostration: A marked loss of strength, as in exhaustion

Pustule: A small circumscribed elevation of the skin, containing purulent material

Sepsis: The presence of various pus-forming and other pathogenic organisms, or their toxins, in the blood or tissues

Stomatitis: Inflammation of the mucous membrane of the mouth

Vesicle: A small, circumscribed elevation on the skin containing fluid (i.e., blister)

Reference: Stedman’s Medical Dictionary, 26th Ed.