COLLEGE OF BUSINESS STANDARD COURSE OUTLINE

I. General Information

Course Number: IS 585
Course Title: System Analysis and Design
Units: 3
Prerequisite: Graduate Standing, IS 502
Course Coordinator: Melody Kiang
SCO prepared by: Melody Kiang
Date prepared/revised: Oct. 8, 2012

II. Catalog Description

Introduction to current and emerging practices, concepts, and methodologies of systems analysis and design. Requirements analysis, business process modeling, conceptual and physical design, systems implementation and maintenance, project management and teamwork, roles and responsibilities of systems analysts. Letter grade only (A-F).

III. Curriculum Justification(s)

Analysis of the information needs of an organization and the subsequent design of solutions to meet business requirements are at the heart of the information systems field. In today’s ever-increasing competitive business environment, the effective filtering and use of big data for discovering and exploring business opportunities become crucial for enterprise to maintain the sustainable advantage. A well-designed enterprise information system can not only improve the productivity of the company, but also enhance the company’s competitive advantage in today’s technology-intensive global environment. The student will look at the major stakeholders in the process of developing information systems. Emphasis is placed on system owners, system users, project managers, system analyst, and system developers. The course covers both practical and managerial issues related to the design and analysis and modern information systems. As part of the course, students will learn skills, methodologies, techniques, tools, and perspectives essential for system's analysts and designers to successfully manage the development of information systems.

Upon completion, the student will meet the following four specific CBA learning goals:

Learning Goal #1 – Critical Thinking
Learning Goal #3 – Interpersonal, Leadership & Team Skills
Learning Goal #5 – Quantitative and Technical Skills
Learning Goal #6 – Domestic & Global Environment
IV. Course Objectives

Students who pass IS 540 must demonstrate ...

1) Understand the importance of adopting a structured methodology for system development.
2) Prepare and use various information gathering techniques for eliciting user information requirements and systems expectation.
3) Perform cost-benefit analysis and feasibility study.
4) Describe the major alternative methodologies used in developing information systems and the considerations involved in choosing the methodology to implement.
5) Produce the necessary system documentation at each stage of the analysis and design of an information system.
6) Develop an understanding of the overall process of System Development Life Cycle -- and of the roles of the analysis, design, production, implementation, and operation phases of that cycle.
7) Construct and interpret a variety of system description documents and techniques such as Domain of change, Physical and logical Data flow diagrams, Entity Relationship diagrams, Structure charts, screen forms and report layouts, etc.
8) Knowledge of business process reengineering.
9) Communicate requirements effectively both in written and oral formats.
10) Understand the importance of these techniques as tools for information systems managers.
11) Manage an Information Systems Project.

V. Outline of Subject Matter

Introduction to Systems Analysis and Design
The Systems Development Environment
 Types of Information Systems and Systems Development
 Methodologies- Systems Development Life cycle (SDLC), prototyping, Case tools, RAD, Agile, etc.
Origins of Software
Systems Acquisition (Outsourcing, Packaged Software, In-house Development, Application Service Provider, Open Source, Enterprise Solution Software)
Managing the Information System Project
 Project Plans and Schedules
 Using Project Management Software
Planning
 Identifying and Selecting Systems Development Projects
 Initiating and Planning the Systems Development Projects
Project Feasibility Study—Technical, Economic, Operational, Contractual, etc.
Base Line Project Plan
Planning-Deliverables

Analysis Phase
- Determining Systems Requirements
- Structuring System Process Requirements—Process Modeling, Data Flow diagrams
- Structuring System Logic Requirements—Modeling Logic using Structure English, Decision Tables
- Structuring System Data Requirements—Conceptual Data Modeling, ERD Analysis Phase Deliverables

Design Phase
- Designing databases
- Designing forms and Reports
- Designing Graphical Interfaces and Dialogues
- Finalizing the Design Specifications
- Design Phase Deliverables

System Prototyping
- System Deliverables
- Systems implementation and maintenance

VI. Methods of Instruction

This course provides students with an in-depth understanding of the methodology, tools, and techniques involved in designing an information system for an organization, including a detailed study of the systems development life cycle. The course involves reviewing and analyzing cases and practice exercises. A semester-long project will be required, including analysis and design of an actual or hypothetical information system.

The preferred method for this course is lecture based with some lab set aside for implementing the Data and Process modeling tools and system prototyping. After each major topic is introduced students undertake short exercises to ensure their understanding of the essential concepts. The course covers all important system analysis and design topics you need to understand to manage an information system. Opportunities for class discussion, group work, and student capstone project and presentations are essential. Instructors are required to assign a course project that incorporates the entire systems development life cycle. Students should be encouraged to seek outside of the classroom fieldwork for their data gathering and requirements gathering of their final project.

Extend and Nature of Technology Use
Instructors must assign homework, exercises, and projects that involve the utilization of various system analysis and design techniques.
The following two textbooks cover the subject area well, but instructor may select a similar textbook.

Required Texts
Jeffrey A. Hoffer, Joey f. George and Joseph S. Valacich

Systems Analysis and Design, Published by: Thomson/Course Technology
Shelly and Cashman

VII. Instructional Policies Requirements

A. Assessment Criteria

Homework
Students will complete individual homework profiling their competence in various subject matters.

Quizzes and Exams
Students will complete quizzes (optional), mid-term exam (required; at least one), and final exam (required).

Projects
Instructors are strongly encouraged to assign comprehensive team project that requires problem solving and the utilization of system analysis and design techniques to solve real-world problems. The students are expected to work in small-group teams and individually on parts of the overall project, and present interim and final oral and written reports. Though the final report will be the product of the team as a whole, the responsibility of the individual team members for the various parts of the report must be made clear.

B. Required Statement

In compliance with university policy: Final grades will be based on at least three, and preferably four or more, demonstrations of competence. In no case will the grade on any class tests count for more than one-third of the course grade.

C. Attendance, Withdrawal, Late Assignments

Students are expected to attend courses and turn in assignments on time. Specific attendance and late assignment policies are up to each individual instructor’s discretion. The withdrawal policy is the same as that of the university.
D. Disabilities

Students with disabilities are responsible for notifying their instructor as early as possible of their needs for an accommodation of a verified disability. A student with a disability is urged to consult with Disabled Student Services as soon as possible in order to identify possible accommodations to enhance academic success.